Stream: Internet Engineering Task Force (IETF)

RFC: 9083

STD: 95

Obsoletes: 7483

Category: Standards Track

Published: June 2021

ISSN: 2070-1721

Authors: S. Hollenbeck A. Newton

Verisign Labs ~ AWS

RFC 9083
JSON Responses for the Registration Data Access
Protocol (RDAP)

Abstract

This document describes JSON data structures representing registration information maintained
by Regional Internet Registries (RIRs) and Domain Name Registries (DNRs). These data structures
are used to form Registration Data Access Protocol (RDAP) query responses. This document
obsoletes RFC 7483.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9083.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

Hollenbeck & Newton Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9083
https://www.rfc-editor.org/rfc/rfc7483
https://www.rfc-editor.org/info/rfc9083
https://trustee.ietf.org/license-info

RFC 9083

RDAP JSON Responses

June 2021

with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1.
1.2.

Terminology and Definitions

Data Model

2. Use of JSON

2.1.

Naming

3. Common Data Types

4. Common Data Structures

4.1.
4.2.
4.3.
4.4,
4.5.
4.6.
4.7.
4.8.
4.9.

RDAP Conformance
Links

Notices and Remarks
Language Identifier
Events

Status

Port 43 WHOIS Server
Public IDs

Object Class Name

4.10. An Example

5. Object Classes

5.1.
5.2.
3.3.
5.4.
5.5.

The Entity Object Class

The Nameserver Object Class
The Domain Object Class

The IP Network Object Class

The Autonomous System Number Object Class

6. Error Response Body

7. Responding to Help Queries

8. Responding To Searches

Hollenbeck & Newton Standards Track

Page 2

RFC 9083 RDAP JSON Responses June 2021

9. Indicating Truncated Responses
10. IANA Considerations
10.1. RDAP JSON Media Type Registration
10.2. JSON Values Registry
10.2.1. Notice and Remark Types
10.2.2. Status
10.2.3. Event Actions
10.2.4. Roles

10.2.5. Variant Relations

11. Security Considerations

12. Internationalization Considerations
12.1. Character Encoding
12.2. URIs and IRIs
12.3. Language Tags

12.4. Internationalized Domain Names

13. Privacy Considerations
14. References
14.1. Normative References

14.2. Informative References

Appendix A. Suggested Data Modeling with the Entity Object Class
A.1. Registrants and Contacts

A.2. Registrars

Appendix B. Modeling Events

Appendix C. Structured vs. Unstructured Addresses
Appendix D. Secure DNS

Appendix E. Motivations for Using JSON

Appendix F. Changes from RFC 7483
Acknowledgments

Authors' Addresses

Hollenbeck & Newton Standards Track Page 3

RFC 9083 RDAP JSON Responses June 2021

1. Introduction

This document describes responses in the JSON [RFC8259] format for the queries as defined by
the Registration Data Access Protocol Query Format [RFC9082]. A communication protocol for
exchanging queries and responses is described in [RFC7480]. This document obsoletes RFC 7483.

1.1. Terminology and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

The following list describes terminology and definitions used throughout this document:

DNR: Domain Name Registry or Domain Name Registrar

LDH: letters, digits, hyphen

member: data found within an object as defined by JSON [RFC8259]
object: a data structure as defined by JSON [RFC8259]

object class: the definition of members that may be found in JSON objects described in this
document

object instance: an instantiation or specific instance of an object class
RDAP: Registration Data Access Protocol

RIR: Regional Internet Registry

1.2. Data Model

The data model for JSON responses is specified in five sections:

1. simple data types conveyed in JSON primitive types (strings, numbers, booleans, and null)

2. data structures specified as JSON arrays or objects that are used repeatedly when building
up larger objects

3. object classes representing structured data corresponding to a lookup of a single object
4. arrays of objects representing structured data corresponding to a search for multiple objects
5. the response to an error

Hollenbeck & Newton Standards Track Page 4

RFC 9083 RDAP JSON Responses June 2021

The object classes represent responses for two major categories of data: responses returned by
RIRs for registration data related to IP addresses, reverse DNS names, and Autonomous System
numbers and responses returned by DNRs for registration data related to forward DNS names.
The following object classes are returned by both RIRs and DNRs:

1. domains
2. nameservers
3. entities

The information served by both RIRs and DNRs for these object classes overlap extensively and
are given in this document as a unified model for both classes of service.

In addition to the object classes listed above, RIRs also serve the following object classes:

1. IP networks
2. Autonomous System numbers

Object classes defined in this document represent a minimal set of what a compliant client/server
needs to understand to function correctly; however, some deployments may want to include
additional object classes to suit individual needs. Anticipating this need for extension, Section 2.1
of this document defines a mechanism for extending the JSON objects that are described in this
document.

Positive responses take two forms. A response to a lookup of a single object in the registration
system yields a JSON object, which is the subject of the lookup. A response to a search for
multiple objects yields a JSON object that contains an array of JSON objects that are the subject of
the search. In each type of response, other data structures are present within the topmost JSON
object.

2. Use of JSON

2.1. Naming

Clients of these JSON responses SHOULD ignore unrecognized JSON members in responses.
Servers can insert members into the JSON responses, which are not specified in this document,
but that does not constitute an error in the response. Servers that insert such unspecified
members into JSON responses SHOULD have member names prefixed with a short identifier
followed by an underscore followed by a meaningful name. It has been observed that these short
identifiers aid software implementers with identifying the specification of the JSON member, and
failure to use one could cause an implementer to assume the server is erroneously using a name
from this specification. This allowance does not apply to jCard [RFC7095] objects. The full JSON
name (the prefix plus the underscore plus the meaningful name) SHOULD adhere to the
character and name limitations of the prefix registry described in [RFC7480]. Failure to use these
limitations could result in slower adoption as these limitations have been observed to aid some
client programming models.

Hollenbeck & Newton Standards Track Page 5

RFC 9083 RDAP JSON Responses June 2021

Consider the following JSON response with JSON members, all of which are specified in this

document.
"handle" : "ABC123",
"remarks"
[
"description”
"She sells sea shells down by the sea shore.",
"Originally written by Terry Sullivan.”
]
}
]
}
Figure 1

If The Registry of the Moon desires to express information not found in this specification, it
might select "lunarNIC" as its identifying prefix and insert, as an example, the member named
"lunarNIC_beforeOneSmallStep" to signify registrations occurring before the first moon landing
and the member named "lunarNIC_harshMistressNotes" that contains other descriptive text.

Consider the following JSON response with JSON names, some of which should be ignored by
clients without knowledge of their meaning.

"handle" : "ABC123",

"lunarNIC_beforeOneSmallStep"” : "TRUE THAT!",
"remarks"

[

"description”

"She sells sea shells down by the sea shore.",

"Originally written by Terry Sullivan.”
]

}

'unarNIC_harshMistressNotes”

]

"In space, ",
"nobody can hear you scream."

]
}

Figure 2

Insertion of unrecognized members ignored by clients may also be used for future revisions to
this specification.

Hollenbeck & Newton Standards Track Page 6

RFC 9083

RDAP JSON Responses June 2021

Clients processing JSON responses need to be prepared for members representing registration
data specified in this document to be absent from a response. In other words, servers are free to
omit unrequired/optional JSON members containing registration data based on their own

policies.

Finally, all JSON names specified in this document are case sensitive. Both servers and clients
MUST transmit and process them using the specified character case.

3. Common Data Types

JSON [RFC8259] defines the data types of a number, character string, boolean, array, object, and
null. This section describes the semantics and/or syntax reference for common, JSON character
strings used in this document.

handle:

IPv4 addresses:

IPv6 addresses:

country codes:

LDH names:

Unicode names:

dates and times:

URIs:

Hollenbeck & Newton

DNRs and RIRs have registry-unique identifiers that may be used to
specifically reference an object instance. The semantics of this data type as
found in this document are to be a registry-unique reference to the closest
enclosing object where the value is found. The data type names "registryld",
"roid", "nic-handle", "registrationNo", etc., are terms often synonymous with
this data type. In this document, the term "handle" is used. The term exposed
to users by clients is a presentation issue beyond the scope of this document.

This value is a simple character string.

The representation of IPv4 addresses in this document uses the dotted-
decimal notation. An example of this textual representation is "192.0.2.0".

The representation of IPv6 addresses in this document follow the forms
outlined in [RFC5952]. An example of this textual representation is
"2001:db8::1:0:0:1".

Where the identity of a geopolitical nation or country is needed, these
identities are represented with the alpha-2 or two-character country code
designation as defined in [IS0.3166.2020]. The alpha-2 representation is used
because it is freely available, whereas the alpha-3 and numeric-3 standards
are not.

Textual representations of DNS names where the labels of the domain are all
"letters, digits, hyphen" labels as described by [RFC5890]. Trailing periods are
optional.

Textual representations of DNS names where one or more of the labels are U-
labels as described by [RFC5890]. Trailing periods are optional.

The syntax for values denoting dates and times is defined in [RFC3339].

The syntax for values denoting a Uniform Resource Identifier (URI) is defined
by [RFC3986].

Standards Track Page 7

RFC 9083 RDAP JSON Responses June 2021

Contact information is defined using jCards as described in [RFC7095]. The "fn" member is
required and MUST NOT be null according to [RFC6350]. An empty "fn" member MAY be used
when the contact name does not exist or is redacted.

4. Common Data Structures

This section defines common data structures used in responses and object classes.

4.1. RDAP Conformance

The data structure named "rdapConformance" is an array of strings, each providing a hint as to
the specifications used in the construction of the response. This data structure MUST appear in
the topmost JSON object of a response and MUST NOT appear anywhere else. A response to a
"help" request will include identifiers for all of the specifications supported by the server. A
response to any other request will include only identifiers for the specifications used in the
construction of the response. The set of returned identifiers MAY vary depending on the
authorization level of the client.

An example rdapConformance data structure:

"rdapConformance”

"rdap_level_0"
]

Figure 3

The string literal "rdap_level_0" signifies conformance with this specification. When custom JSON
values are inserted into responses, conformance to those custom specifications MUST be
indicated by including a unique string literal value registered in the IANA RDAP Extensions
registry specified in [RFC7480]. For example, if the fictional Registry of the Moon wants to signify
that their JSON responses are conformant with their registered extensions, the string used might
be "lunarNIC_level_0". These registered values aid the identification of specifications for software
implementers, and failure to use them could result in slower adoption of extensions.

Example rdapConformance structure with custom extensions noted:
"rdapConformance”
"rdap_level_0",

“lunarNIC_level_0"
]

Figure 4

Hollenbeck & Newton Standards Track Page 8

RFC 9083 RDAP JSON Responses June 2021

4.2. Links

The "links" array is found in data structures to signify links to other resources on the Internet.
The relationship of these links is defined by the IANA registry described by [RFC8288].

The following is an example of the link structure:

{
"value" : "https://example.com/context_uri",
"rel" : "self",
"href" : "https://example.com/target_uri",
"hreflang" : ["en", "ch" 1,
"title" : "title",
"media" : "screen",
"type" : "application/json"

}

Figure 5

The JSON name/values of "rel", "href", "hreflang", "title", "media", and "type" correspond to values
found in Section 3 of [RFC8288]. The "value" JSON value is the context URI as described by
[RFC8288]. The "value", "rel", and "href" JSON values MUST be specified. All other JSON values are
OPTIONAL. A "related" link relation MUST NOT include an "href" URI that is the same as the "self"
link relation "href" URI to reduce the risk of infinite client processing loops. Internationalized
Domain Names (IDNs) returned in URIs SHOULD be consistently returned in LDH name format to
allow clients to process these IDNs according to their capabilities.

This is an example of the "links" array as it might be found in an object class:

"links"
[
{
"value" : "https://example.com/ip/2001:db8::123",
"rel" : "self",
"href" : "https://example.com/ip/2601:db8::123",
“type" : "application/rdap+json”
}I
{
"value" : "https://example.com/ip/2001:db8::123",
"rel" : "up",
"href" : "https://example.com/ip/2601:db8::/48",
“type" : "application/rdap+json”
}

Figure 6

Hollenbeck & Newton Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc8288#section-3

RFC 9083 RDAP JSON Responses June 2021

4.3. Notices and Remarks

The "notices" and "remarks" data structures take the same form. The notices structure denotes
information about the service providing RDAP information and/or information about the entire
response, whereas the remarks structure denotes information about the object class that
contains it (see Section 5 regarding object classes).

Both are arrays of objects. Each object contains a "title" string representing the title of the object,
a "type" string denoting a registered type of remark or notice (see Section 10.2.1), an array of
strings named "description” for the purposes of conveying any descriptive text, and a "links"
array as described in Section 4.2. The "description” array MUST be included. All other JSON values
are OPTIONAL.

An example of the notices data structure:

"notices"”
{
"title" : "Terms of Use",
"description”

[
"Service subject to The Registry of the Moon's TO0S.",

"Copyright (c) 2020 LunarNIC"

"links"
[
{
"value" : "https://example.net/entity/XXXX",
"rel" : "alternate",
"type" : "text/html",
"href" : "https://www.example.com/terms_of_use.html"
}
]
}
]
Figure 7

It is the job of the clients to determine line breaks, spacing, and display issues for sentences
within the character strings of the "description” array. Each string in the "description” array
contains a single complete division of human-readable text indicating to clients where there are
semantic breaks.

Hollenbeck & Newton Standards Track Page 10

RFC 9083 RDAP JSON Responses June 2021

An example of the remarks data structure:

"remarks"

[

"description”

"She sells sea shells down by the sea shore.",
"Originally written by Terry Sullivan."
]
}
]

Figure 8
Note that objects in the "remarks" array may also have a "links" array.

While the "title" and "description" fields are intended primarily for human consumption, the
"type" string contains a well-known value to be registered with IANA (see Section 10.2.1) for
programmatic use.

An example of the remarks data structure:

"remarks"
[
{
"type" : "object truncated due to authorization",
"description”

[
"Some registration data may not have been given.",
"Use proper authorization credentials to see all of it."
]
}
]

Figure 9

While the "remarks" array will appear in many object classes in a response, the "notices" array
appears only in the topmost object of a response.

4.4. Language Identifier

This data structure consists solely of a name/value pair, where the name is "lang" and the value
is a string containing a language identifier as described in [RFC5646].

"lang" : "mn-Cyrl-MN"

Figure 10

Hollenbeck & Newton Standards Track Page 11

RFC 9083 RDAP JSON Responses June 2021

The "lang" attribute as defined in this section MAY appear anywhere in an object class or data
structure, except for in jCard objects. vCard supports similar functionality by way of the
LANGUAGE property parameter (see Section 5.1 of RFC 6350 [RFC6350]).

4.5. Events

This data structure represents events that have occurred on an instance of an object class (see
Section 5 regarding object classes).

This is an example of an "events" array.

"events"
[
{
"eventAction" : "registration”,
"eventActor" : "SOMEID-LUNARNIC",
"eventDate" : "1990-12-31T23:59:59Z7"
} ’
{
"eventAction" : "last changed"”,
"eventActor" : "OTHERID-LUNARNIC",
"eventDate" : "1991-12-31T723:59:597"
}
]
Figure 11

The "events" array consists of objects, each with the following members:

* "eventAction" -- a REQUIRED string denoting the reason for the event

o "eventActor” -- an OPTIONAL identifier denoting the actor responsible for the event
* "eventDate" -- a REQUIRED string containing the time and date the event occurred

¢ "links" -- OPTIONAL; see Section 4.2

Events can be future dated. One use case for future dating of events is to denote when an object
expires from a registry.

The "links" array in this data structure is provided for references to the event actor. In order to
reference an RDAP entity, a "rel" of "related" and a "type" of "application/rdap+json" is used in the
link reference.

See Section 10.2.3 for a list of values for the "eventAction" string. See Appendix B regarding the
various ways events can be modeled.

4.6. Status

This data structure, named "status", is an array of strings indicating the state of a registered
object (see Section 10.2.2 for a list of values).

Hollenbeck & Newton Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc6350#section-5.1

RFC 9083 RDAP JSON Responses June 2021

4.7. Port 43 WHOIS Server

This data structure, a member named "port43", is a simple character string containing the fully
qualified host name or IP address of the WHOIS [RFC3912] server where the containing object
instance may be found. Note that this is not a URI, as there is no WHOIS URI scheme.

4.8. Public IDs

This data structure maps a public identifier to an object class. It is named "publiclds" and is an
array of objects, with each object containing the following REQUIRED members:

* type - a string denoting the type of public identifier
o identifier -- a string denoting a public identifier of the type related to "type"

The following is an example of a publiclds structure.

"publicIds":
[
{
"type" :"IANA Registrar ID",
"identifier":"1"
}
]

Figure 12

4.9. Object Class Name

This data structure, a member named "objectClassName", gives the object class name of a
particular object as a string. This identifies the type of object being processed. An
objectClassName is REQUIRED in all RDAP response objects so that the type of the object can be
interpreted.

Hollenbeck & Newton Standards Track Page 13

RFC 9083 RDAP JSON Responses June 2021

4.10. An Example

This is an example response with both rdapConformance and notices embedded:

"rdapConformance"

"rdap_level_0"
]

’
otices"

[
{
“title" : "Content Removed",
"description”

[

"Without full authorization, content has been removed.",

"Sorry, dude!"
] !
"links"
[
{
"value" : "https://example.net/ip/192.0.2.0/24",
"rel" : "alternate",
"type" : "text/html",
"href" : "https://www.example.com/redaction_policy.html"
}
]
}
I,
"lang" : "en",
"objectClassName" : "ip network",
"startAddress" : "192.0.2.0",
"endAddress" : "192.0.2.255",
"handle" : "XXXX-RIR",
"ipVersion" : "v4",
"name": "NET-RTR-1",
"parentHandle" : "YYYY-RIR",
"remarks"
[
"description”
"She sells sea shells down by the sea shore.",
"Originally written by Terry Sullivan."
]
}
]
}
Figure 13

Hollenbeck & Newton Standards Track Page 14

RFC 9083 RDAP JSON Responses June 2021

5. Object Classes

Object classes represent structures appropriate for a response from the queries specified in
[RFC9082].

Each object class contains a "links" array as specified in Section 4.2. For every object class
instance in a response, whether the object class instance is directly representing the response to
a query or is embedded in other object class instances or is an item in a search result set, servers
SHOULD provide a link representing a URI for that object class instance using the "self"
relationship as described in the IANA registry specified by [RFC8288]. As explained in Section 5.2,
this may be not always be possible for nameserver data. Clients MUST be able to process object
instances without a self link. When present, clients can use the self link for caching data. Servers
MAY provide more than one self link for any given object instance. Failure to provide any self
link by a server may result in clients being unable to cache object class instances.

Clients using self links for caching SHOULD NOT cache any object class instances where the
authority of the self link is different than the authority of the server returning the data. Failing to
do so might result in cache poisoning.

Self links MUST contain a "type" element containing the "application/rdap+json” media type when
referencing RDAP object instances as defined by this document.

This is an example of the "links" array with a self link to an object class:

"links"
[
{
"value" : "https://example.com/ip/2001:db8::123",
"rel" : "self",
"href" : "https://example.com/ip/2001:db8::123",
"type" : "application/rdap+json"”
}
]
Figure 14

5.1. The Entity Object Class

The entity object class appears throughout this document and is an appropriate response for the
[entity/XXXX query defined in "Registration Data Access Protocol (RDAP) Query Format"
[RFC9082]. This object class represents the information of organizations, corporations,
governments, non-profits, clubs, individual persons, and informal groups of people. All of these
representations are so similar that it is best to represent them in JSON [RFC8259] with one
construct, the entity object class, to aid in the reuse of code by implementers.

Hollenbeck & Newton Standards Track Page 15

RFC 9083 RDAP JSON Responses June 2021

The entity object class uses jCard [RFC7095] to represent contact information, such as postal
addresses, email addresses, phone numbers and names of organizations and individuals. Many

of the types of information that can be represented with jCard have little or no use in RDAP, such
as birthdays, anniversaries, and gender.

Hollenbeck & Newton Standards Track Page 16

RFC 9083 RDAP JSON Responses June 2021

The entity object is served by both RIRs and DNRs. The following is an example of an entity that
might be served by an RIR.

Hollenbeck & Newton Standards Track Page 17

RFC 9083 RDAP JSON Responses
"objectClassName" "entity",
"handle" : "XXXX",
"vcardArray":[
"vcard",
[
["version", {}, "text", "4.0"],
["fn", {}, "text", "Joe User"],
["n"l {}l II-tex.t"l
[”USer”, IlJoell, IIII, IIII, [Iling. jrll, ”M.SC_”]]

,
["kind", {}, "text", "individual"],

["lang", {
"pref":"1"
}, "language-tag", "fr"],
["lang", {
"pref":"2"
}, "language-tag", "en"],
["org", {
"type" :"work"
}, "text", "Example"],
["title", {}, "text", "Research Scientist"],
["role", {}, "text", "Project Lead"],
["adr",
{ "type":"work" },
Etext”,

"Suite 1234",

"4321 Rue Somewhere",
"Quebec",

"QC"

"G1V 2M2",

"Canada"

"type":"home",
"label”:"123 Maple Ave\nSuite
}

[

]

] !
["tel",
{

’
ext",

"type":["work", "voice"],
"pref":"1"
}

IluriII’
“tel:+1-555-555-1234;ext=102"

],
["tel",

{ "type":["work", "cell",

Hollenbeck & Newton

"voice",

90001\nVancouver\nBC\n1239\n"

"video", "text"] },

Standards Track

June 2021

Page 18

RFC 9083 RDAP JSON Responses

“tel:+1-555-555-4321"

"email",
{ "type":"work" },
"text",
"joe.user@example.com"
1,
["geo”, {
"type" :"work"
}, "uri", "geo:46.772673,-71.282945"],
["key",
{ "type":"work" },
"uri”,
"https://www.example.com/joe.user/joe.asc"
]l
["tz", {},
"utc-offset", "-05:00"],

[llur1l|, { Iltypell:llhomell },
"uri", "https://example.org"]
]

'oles":["registrar"],
"publicIds":[

]

{
“type" :"IANA Registrar ID",
"identifier":"1"
}
”}emarks”:[
"description":|
"She sells sea shells down by the sea shore.",
"Originally written by Terry Sullivan."
]
}
] ’
"links":[

{
"value":"https://example.com/entity/XXXX",
"rel":"self",

"href" :"https://example.com/entity/XXXX",
"type" : "application/rdap+json"”
}
”évents":[
{
"eventAction":"registration",
"eventDate":"19960-12-31T723:59:597"
}
1,
"asEventActor":|
{
"eventAction":"last changed",
"eventDate":"1991-12-31T723:59:59Z2"
}
]
}
Hollenbeck & Newton Standards Track

June 2021

Page 19

RFC 9083 RDAP JSON Responses June 2021

Figure 15
The entity object class can contain the following members:

* objectClassName -- the string "entity"
* handle - a string representing a registry-unique identifier of the entity
» vcardArray -- a jCard with the entity's contact information

e roles -- an array of strings, each signifying the relationship an object would have with its
closest containing object (see Section 10.2.4 for a list of values)

* publiclds -- see Section 4.8

* entities -- an array of entity objects as defined by this section
* remarks -- see Section 4.3

e links -- see Section 4.2

* events -- see Section 4.5

* asEventActor -- this data structure takes the same form as the events data structure (see
Section 4.5), but each object in the array MUST NOT have an "eventActor" member. These
objects denote that the entity is an event actor for the given events. See Appendix B
regarding the various ways events can be modeled.

* status -- see Section 4.6

* port43 -- see Section 4.7

* networks -- an array of IP network objects as defined in Section 5.4
e autnums -- an array of autnum objects as defined in Section 5.5

Entities may also have other entities embedded with them in an array. This can be used to model
an organization with specific individuals fulfilling designated roles of responsibility.

Hollenbeck & Newton Standards Track Page 20

RFC 9083 RDAP JSON Responses

The following is an elided example of an entity with embedded entities.

{
"objectClassName" : "entity",
"handle" : "ANENTITY",
"roles" : ["registrar"],
;éﬁtities"
[
"objectClassName" : "entity",
"handle": "ANEMBEDDEDENTITY",
"roles" : ["technical"],
}I
1,
}
Figure 16
Hollenbeck & Newton Standards Track

June 2021

Page 21

RFC 9083 RDAP JSON Responses June 2021

The following is an example of an entity that might be served by a DNR.

Hollenbeck & Newton Standards Track Page 22

RFC 9083

RDAP JSON Responses

"objectClassName" : "entity",

"handle" : " XXXX",
"vcardArray":[

"vcard",

[

]
]

["version", {}, "text", "4.0"],
["fn", {}, "text", "Joe User"],
["kind", {}, "text", "individual"],
["lang”, {

"pref":"1"
}, "language-tag", "fr"],
["lang”, A

"pref":"2"
}, "language-tag", "en"],
["org”, A

“type" :"work"

, "text", "Example"],

"role", {}, "text", "Project Lead"],
"adr",

{ ”type":”work” }’

"text",

[

"Suite 1234",

"4321 Rue Somewhere",
"Quebec",

"Qc",

"G1V 2M2",

"Canada"

]
],
["tel",

}
[
[
[

{ "type":["work", "voice"], "pref":"1" },

"uri", "tel:+1-555-555-1234;ext=102"

[hemail”,
{ "type":"work" },
"text", "joe.user@example.com"

]

”'tatus”:["validated", "locked" 1,

"remarks" : [

"description":|

"She sells sea shells down by the sea shore.",

"Originally written by Terry Sullivan."
]

}
] ’
"links":[
{
"value":"https://example.com/entity/XXXX",
"rel":"self",
"href" :"https://example.com/entity/XXXX",
Hollenbeck & Newton Standards Track

"title", {}, "text", "Research Scientist"],

June 2021

Page 23

RFC 9083 RDAP JSON Responses June 2021

"type" :"application/rdap+json”

]

'ort43”:"whois.example.net”,
"events": [
{
"eventAction":"registration”,
"eventDate" :"1990-12-31T723:59:597"

}I

{
"eventAction":"last changed",
"eventDate" :"1991-12-31T723:59:59Z7",
"eventActor":"joe@example.com"

}

]
}
Figure 17

See Appendix A for use of the entity object class to model various types of entities found in both
RIRs and DNRs. See Appendix C regarding structured vs. unstructured postal addresses in
entities.

5.2. The Nameserver Object Class

The nameserver object class represents information regarding DNS nameservers used in both
forward and reverse DNS. RIRs and some DNRs register or expose nameserver information as an
attribute of a domain name, while other DNRs model nameservers as "first class objects". Please
note that some of the examples in this section include lines that have been wrapped for reading
clarity.

The nameserver object class accommodates both models and degrees of variation in between.

Hollenbeck & Newton Standards Track Page 24

RFC 9083 RDAP JSON Responses June 2021

The following is an example of a nameserver object.

"objectClassName" : "nameserver",
"handle” : "XXXX",
"1dhName" : "ns1.xn--fo-5ja.example”,
"unicodeName" : "ns.fdo.example",
"status" : ["active"],
"ipAddresses"”
{
"va": ["192.06.2.1", "192.0.2.2"],
"v6": ["2001:db8::123"]

"remarks"

[
{
"description”
[
"She sells sea shells down by the sea shore.",
"Originally written by Terry Sullivan."
]
}

’
inks"

{
"value" : "https://example.net/nameserver/
ns1.xn--fo-5ja.example",
"rel" : "self",
"href" : "https://example.net/nameserver/
ns1.xn--fo-5ja.example”,
"type" : "application/rdap+json"”
}
1,
"port43" : "whois.example.net",
"events"
[
{
"eventAction" : "registration"”,
"eventDate" : "1990-12-31T23:59:59Z"

]

[

"eventAction"” : "last changed",
"eventDate" : "1991-12-31T723:59:597",
"eventActor" : "joe@example.com"

Figure 18

Figure 18 is an example of a nameserver object with all appropriate values given. Registries
using a first-class nameserver data model would embed this in domain objects as well as
allowing references to it with the "/nameserver" query type (all depending on the registry

Hollenbeck & Newton Standards Track Page 25

RFC 9083 RDAP JSON Responses June 2021

operators policy). Other registries may pare back the information as needed. Figure 19 is an
example of a nameserver object as would be found in RIRs and some DNRs, while Figure 20 is an
example of a nameserver object as would be found in other DNRs.

The following is an example of the simplest nameserver object:

"objectClassName" : "nameserver",
"ldhName" : "ns1.example.com"
}
Figure 19

The following is an example of a simple nameserver object that might be commonly used by
DNRs:

"objectClassName" : "nameserver",
"ldhName" : "ns1.example.com",
"ipAddresses" : { "v6" : ["2001:db8::123", "2001:db8::124"] }
}
Figure 20

As nameservers can be modeled by some registries to be first-class objects, they may also have an
array of entities (Section 5.1) embedded to signify parties responsible for the maintenance,
registrations, etc., of the nameservers.

The following is an elided example of a nameserver with embedded entities.

{
"objectClassName" : "nameserver",
"handle" : "XXXX",
"1dhName" : "ns.xn--fo-5ja.example”,
;éﬁtities"
[
]l

}

Figure 21

The nameserver object class can contain the following members:

* objectClassName -- the string "nameserver"
* handle -- a string representing a registry-unique identifier of the nameserver

Hollenbeck & Newton Standards Track Page 26

RFC 9083 RDAP JSON Responses June 2021

* ldhName -- a string containing the LDH name of the nameserver (see Section 3)
* unicodeName -- a string containing a DNS Unicode name of the nameserver (see Section 3)

e ipA