I nt ernet Engi neering Task Force (I ETF) P. Saint-Andre
Request for Comments: 6120 Cisco
osol etes: 3920 March 2011
Cat egory: Standards Track

| SSN: 2070-1721

Ext ensi bl e Messagi ng and Presence Protocol (XMPP): Core
Abstr act

The Extensibl e Messagi ng and Presence Protocol (XMPP) is an
application profile of the Extensible Mrkup Language (XM.) that
enabl es the near-real -time exchange of structured yet extensible data
bet ween any two or nore network entities. This docunment defines
XMPP' s core protocol nethods: setup and teardown of XM streans,
channel encryption, authentication, error handling, and comruni cation
primtives for nessaging, network availability ("presence"), and
request-response interactions. This docunent obsol etes RFC 3920.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it may be obtai ned at
http://ww. rfc-editor.org/info/rfc6120

Copyright Notice

Copyright (c) 2011 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Sai nt - Andr e St andards Track [Page 1]

RFC 6120

Tabl e of Co

1. Intr

il

ch

NNNNN
JOrWONREPRERONE

9

ww

hrAAARARANAARAPOURREARARARRPLONREXPLOLOLWLWLNE
NNDNDN

=

e

e

0000
PR

NNNSNNAN

Sai nt - Andr e

X\VMPP Cor e

ntents

oducti on

Overvi ew .

H story Coe
Functi onal Summary .
Ter m nol ogy
itecture
d obal Addresses .
Presence . .
Per si st ent Strearrs .
Structured Data

Di stri buted Netvvo.rk.oic Cllents and Servers

Bi nding .
Scope

Resol utioh of FuIIy QJa|Ierd Dorraln Narres

1. Preferred Process: SRV Lookup
2. Fal | back Processes . .o
3. When Not to Use SRV
4

Use of SRV Records vvlih Add On SerV| ces.

Reconnection .

Reliability
Streams . .

Stream Fundarrent aI s

Qpening a Stream.

Stream Negoti ation .

Basi ¢ Concepts .
St ream Feat ures For rrat
Restarts . .

Resendi ng Feat ures . .
Conpl etion of Stream Negotl atl on .
Det erm nati on of Addresses .
Fl ow Chart
CI osing a Stream.

D|rect|onaI|ty. . .

Handl i ng of Silent Peers .
Dead Connecti on
Br oken Stream
Idle Peer . .
Use of Checki ng I\/et hods
Stream Attri butes .
from.
to .

id. . ..
xm :lang .
ver si on .
Sunmmary of Stream Attrlbutes .
XI\/L Nanespaces .

NookwNE

curwNE

St andards Track

March 2011

RFC 6120 XMPP Cor e March 2011
4.8.1 St ream Nanespace . 43
4.8.2 Cont ent Nanespace 43
4.8.3 XMPP Cont ent Nanespaces 44
4.8.4 O her Nanespaces . 46
4.8.5. Nanmespace Declaratrons and Prefrxes 47

4.9, Stream Errors 48
4.9.1. Rul es . 48
4.9.1.1. Streaanrrors Are Unrecoverable .o 48
4.9.1.2. Stream Errors Can Cccur During Setup 49
4.9.1.3. Stream Errors Wen the Host |Is Unspecified or
Unknown . . 50
4.9.1.4. \ere Stream Errors Are Sent 50
4.9. 2. Syntax 51
4.9. 3. Def i ned Streaanrror Cbndltlons 52
4.9.3.1. bad-fornmat 52
4.9.3.2. bad-nanespace- preflx 52
4.9.3.3. conflict 53
4.9.3.4. connection- tlneout 54
4.9.3.5. host-gone . 54
4.9.3.6. host-unknown . 55
4.9.3.7. inproper- addre55|ng . 56
4.9.3.8. internal-server-error 56
4.9.3.9. invalid-from 56
4.9.3.10. invalid-nanespace . 57
4.9.3.11. invalid-xm 57
4.9.3.12. not-authorized 58
4.9.3.13. not-well-forned . 59
4.9.3.14. policy-violation 59
4.9.3.15. renote-connection- farled 60
4.9.3.16. reset 60
4.9.3.17. resource- constralnt 61
4.9.3.18. restricted-xn 61
4.9.3.19. see-other-host 62
4.9.3.20. system shutdown . 64
4.9.3.21. undefined-condition . 64
4.9.3.22. unsupported-encoding 64
4.9.3.23. unsupported-feature . 65
4.9.3.24. unsupported-stanza-type . 65
4.9.3.25. unsupported-version . . . 66
4.9. 4. Appl i cati on-Specific Cbndltlons 67
4.10. Sinmplified Stream Exanpl es . . 68
5. STARTTLS Negoti ation .o 69
5.1. Fundanental s . 69
5.2. Suppor t . 70
5.3. StreanrNegotlatlon Rules . 70
5.3. 1. Mandat or y-t o- hbgotlate . 70
5.3.2. Restart . 70
5.3.3. Dat a Fornattrng 70
Sai nt - Andr e St andards Track [Page 3]

RFC 6120 XMPP Cor e

4 Order of TLS and SASL Negotl ations .
5. TLS Renegotl ation

6. TLS Extensions .

Process

o
GEL S RORY

(6]
Qoooraooss

Initiation of STARTTLS Negotlatlon.
2.1. STARTTLS Comand .
2.2. Failure Case
2.3. Proceed Case

TLS Negoti ation
3.1. Rules . .
3.2. TLS Failure
.3.3. TLS Success
L Negotl ation

Fundanent al s

Suppor t .

Strean1hbgot|at|on Rules
Mandat ory-t o- Negoti ate .
Restart .
hbchanlsn1Preferences
Mechani sm Offers .
Data Formatting
Security Layers
Sinmple User Nane
Aut hori zation ldentity .
Real ms . .
0. Round Trlps
Process

BRAOABRNE

6. SA
1

6.
6.
6

WWWWwwwwww
“SQFD?4§’¢:PS°P’P

6.

Initiation . .

Chal | enge- Response Sequence
Abort . . Co

SASL Fallure .

SASL Success

SASL Errors

aborted .
account - dlsabled
credenti al s-expired
encryption-required

i ncorrect-encoding .

i nval i d-aut hzi d

i nval i d- mechani sm

mal f or med- r equest
mechani smt oo- weak .

10. not-authorized . .
.11. tenporary-auth- fallure
6. SASL Definition -
7. Resource Binding

el ol
oOhwNpE

6.

SRR RO RS RE R RNy
CRNDUAWNE

2
3
6
6
6
6
6
6
6
6
6
6
4
6
6
6
6.
6
6
5
6
6
6
6
6
6
6
6
6
6
6
6

Sai nt - Andr e St andards Track

Exchange of Streanwkbaders and Streaneratures

Exchange of Streanwkbaders and Streaneratures

March 2011

71
71
72
72
72
73
73
73
74
74
74
75
76
77
77
77
77
77
78
78
78
79
80
80
80
81
81
82
82
83
84
84
85
86
87
88
88
88
89
89
89
90
90
90
91
91
91
92

[Page 4]

RFC 6120

NN
ww

NNN
NNoORNNONE

NNo o

~
SENEN
;NN*NN

o
@R XN

@

e
ghwRERENRERE

o o 00 12 00 00 00 1V 0O 0O
NINEN

G0 00000000000 KoWwww

Sai nt - Andr e

1.
2.
LT
7
3.

X\VMPP Cor e

Fundanental s .
Suppor t .
St r eam Negot i atl on Rul es .

.1 Mandat or y-t o- Negotlate .
. 2. Rest art o

Adverti si ng Support .
Cener ati on of Resource Identrfr ers .
Server - Gener at ed Resource ldentifier

1. Success Case .

2. Error Cases

6.2. 1. Resour ce Constrar nt
6.2.2. Not Allowed .

Cient-Submtted Resource | dent | f| er
Success Case .
Error Cases .
2.1. Bad Request
2.2. Conflict
Retries
Stanzas . .
Conmon Attrl but es
to
1.1. dient-to-Server Streans
1. 2. Server-to-Server Streans
from. o
dient- to Server St reans
Server-to-Server Streans
id. .
type . . .
xm :lang .
Basi c Senanti cs

NN

L
. 2.

1 Message Senanti cs
. 2. Presence Semantics .
3 | Q Semantics .
Stanza Errors
1. Rul es
2. Syntax . .
3. Def i ned Oondr t| ons .
3.3.1. bad- request
3.3.2. conflict .
3.3.3. feature-not-i rrpl errent ed .
3.3.4. forbidden .
3.3.5. gone
3.3.6. internal- server error
3.3.7. itemnot-found
3.3.8. jid-nmalformed .
3.3.9. not-acceptable
3.3.10. not-all owed .
3.3.11. not-authorized

St andards Track

March 2011

92
93
93
93
93
93
94
94
94
95
95
96
96
96
97
97
97
99
99
100
100
100
101
101
101
102
103
103
103
105
105
105
105
107
108
109
110
110
111
111
112
113
113
114
114
115
116
116

[Page 5]

RFC 6120 XMPP Cor e

12. policy-violation .o
13. recipient-unavail able .
14. redirect .
15. registration- reqU|red
16. renote-server-not-found
17. renote-server-timeout
18. resource-constraint
19. service-unavail abl e .
20. subscription-required
21. undefined-condition .
. 22. unexpect ed-request .
Appl i cation-Specific Cbndrtrons
Ext ended Cont ent G e
tailed Exanples
Cient-to-Server Exanples
TLS G

W 00 00 00 0O M B 00 00 O W B
B0 0WWwNwwww
WL 0w W W W www

1.1 .
1.2 SASL
1.3. Resour ce Brndrng

1.4 St anza Exchange

1.5 d ose G
Server-to- Server Exanpl es
1 TLS .

2 SASL

3. St anza Exchange

4

e

LOOoONMNOOOOORDM®

d ose C e e
r Rules for Processing XM St anzas
10.1. In-Order Processing
10.2. General Considerations
10.3. No 'to’ Address

10.3.1. Message
10. 3. 2. Presence
10.3.3. 1Q

10. 4. Renote Domai n

10.4.1. Existing Stream .
10.4.2. No Existing Stream.
10.4.3. FError Handling

10.5. Local Dommin .

10.5.1. donmi npart

10.5.2 donalnpart/resourcepart

10.5.3 | ocal part @onai npart
10.5.3.1. No Such User
10.5.3.2. User Exists .

10. 5. 4.

11. XM Usage
11.1. XM Restrlctlons
11.2. XM Nanmespace Nanes and Preflxes
11.3. Wl |l - Fornmedness e
11.4. Validation

Sai nt - Andr e St andards Track

Iocalpart@ﬁonarnpart/resourcepart

March 2011

117
117
118
119
119
120
121
121
122
123
123
124
125
128
128
128
130
132
133
134
134
134
136
137
137
138
138
140
141
141
141
141
142
142
142
143
143
143
143
143
144
144
144
145
145
146
146
147

[Page 6]

RFC 6120

11. 5.
11. 6.
11.7.
11. 8.

XMPP Core March 2011

I ncl usi on of XML Declaration .
Character Encoding .

Whi t espace .

XML Versions .

12. Internationalization ConS| derat| ons .
13. Security Considerations .

13.
13.
13.
13.
13.
13.
13.

wNookrwNE

13.
13.
13.
13.
13.7.
13.
13.
13.
13.

13. 8.
13.
13.
13.

13. 8.

13. 9.
13.
13.
13.
13.
13.
13.
13.

13. 10.

WNPZENNNNNNNNNE

© © ©

.@.“3.“3.@.“3.@.@

Fundanental s .

Threat Mbdel .

O der of Layers .
Confidentiality and Integrlty
Peer Entity Authentication .
Strong Security

Certificates . .
Certificate Generatl on .
.1.1. General Considerations
.1.2. Server Certificates .
.1.3. dient Certificates . . .
.1. 4. XnppAddr ldentifier Type
Certificate Validation .

.1. Server Certificates .

.2. Cient Certificates

.4. Use of Certificates in XMPP Extensions .
dat ory-to-Inplenent TLS and SASL Technol ogi es .
For Authentication Only .

For Confldentlallty Only . .

For Confidentiality and Aut hentl catl on Wi t h
Passwor ds .

For Confidenti aI i ty and Aut hent| catl on Wi t hout
Passwor ds

Technol ogy Reuse . . .

1. Use of Base 64 in SASL .
2 Use of DNS
3. Use of Hash Functions
4. Use of SASL
5

6

7.

I

SNNNDN

»

Use of TLS . .

Use of UTF-8 .

Use of XM .
nformati on Leaks

13.10.1. | P Addresses . .
13.10. 2. Presence Informati on .

13. 11.
13. 12.
13. 13.
13. 14.
13. 15.

Directory Harvesting .
Deni al of Service
Firewal | s . .
| nt erdomai n Feder atl on .
Non- Repudi at i on

14. | ANA Consi derations .

14. 1.

Sai nt - Andr e

XML Nanespace Nane for TLS Data

. 3. Checki ng of Oertlflcates in Long L| ved Streams.

147
147
148
148
148
148
148
149
150
150
151
151
152
152
152
153
156
156
157
158
158
160
160
160
161
161

162

163
163
163
163
164
164
165
165
166
166
166
166
166
167
169
169
169
170
170

St andards Track [Page 7]

RFC 6120 XMPP Cor e March 2011

1

1

1

1

2.

14.2. XM. Nanmespace Nane for SASL Data 170
14.3. XM Nanmespace Nane for StreamErrors 170
14. 4. XM Nanmespace Nane for Resource Binding 171
14.5. XM. Namespace Nane for Stanza Errors 171
14.6. GSSAPI Service Nanme . . . A
14.7. Port Nunmbers and Service Nanes e
15. Confornance Requirenents 172
16. References . . . T R <
16.1. Nornative References T R < i
16.2. Informative References 184
Appendix A. XM. Schemas .19
A 1. Stream Nanespace . 190
A 2. Stream Error Namespace 192
A 3. STARTTLS Nanespace 193
A 4. SASL Namespace . 194
A 5. Cient Nanespace . 196
A 6. Server Namespace . . . e e e e 202
A T. Resour ce Bi ndi ng Nanespace 2 0 1¢)
A 8. Stanza Error Nanmespace 206
Appendi x B. Contact Addresses 208
Appendi x C. Account Provisioning . . e e 208
Appendix D. Differences from RFC 3920 4 O 1
Appendi x E. Acknow edgenents 210

I ntroduction
Overvi ew

The Extensible Messagi ng and Presence Protocol (XMPP) is an
application profile of the Extensible Markup Language [XM.] that
enabl es the near-real-time exchange of structured yet extensible data
bet ween any two or nore network entities. This docunment defines
XMPP's core protocol methods: setup and teardown of XM streans,
channel encryption, authentication, error handling, and comruni cation
primtives for nessaging, network availability ("presence"), and
request-response interactions.

Hi story

The basic syntax and semantics of XMPP were devel oped originally

wi thin the Jabber open-source community, mainly in 1999. 1In late
2002, the XMPP Working Group was chartered with devel opi ng an
adaptati on of the base Jabber protocol that would be suitable as an
| ETF i nstant messaging (IM and presence technol ogy in accordance
with [IMP-REQS]. |In October 2004, [RFC3920] and [RFC3921] were
publ i shed, representing the nost conplete definition of XWMPP at that
tinme.

Sai nt - Andr e St andards Track [Page 8]

RFC 6120 XMPP Cor e March 2011

Since 2004 the Internet comunity has gai ned extensive inplenentation
and depl oynent experience with XMPP, including fornal
interoperability testing carried out under the auspices of the XWMPP
St andards Foundation (XSF). This docunent incorporates conprehensive
f eedback from software devel opers and XMPP service providers,

i ncludi ng a nunber of backward-conpatible nodifications sumari zed
under Appendix D. As a result, this docunent reflects the rough
consensus of the Internet conmunity regarding the core features of
XMPP 1.0, thus obsol eting RFC 3920.

1.3. Functional Summary

This non-nornmative section provides a devel oper-friendly, functiona
summary of XWPP; refer to the sections that follow for a normative
definition of XWPP.

The purpose of XMPP is to enable the exchange of relatively snal

pi eces of structured data (called "XM. stanzas") over a network

bet ween any two (or nore) entities. XWMPP is typically inplenented
using a distributed client-server architecture, wherein a client
needs to connect to a server in order to gain access to the network
and thus be allowed to exchange XM. stanzas with other entities
(whi ch can be associated with other servers). The process whereby a
client connects to a server, exchanges XM stanzas, and ends the
connection is:

1. Deternmine the |P address and port at which to connect, typically
based on resolution of a fully qualified domain name
(Section 3.2)

2. Open a Transm ssion Control Protocol [TCP] connection

3. Open an XML stream over TCP (Section 4.2)

4. Preferably negotiate Transport Layer Security [TLS] for channe
encryption (Section 5)

5. Authenticate using a Sinple Authentication and Security Layer
[SASL] nechani sm (Section 6)

6. Bind a resource to the stream (Section 7)

7. Exchange an unbounded nunmber of XM. stanzas with other entities
on the network (Section 8)

8. Close the XML stream (Section 4.4)

9. ddose the TCP connection

Sai nt - Andr e St andards Track [Page 9]

RFC 6120 XMPP Cor e March 2011

Wthin XMPP, one server can optionally connect to another server to
enabl e inter-domain or inter-server conmunication. For this to
happen, the two servers need to negotiate a connection between

t hensel ves and then exchange XM. stanzas; the process for doing so
is:

1. Determine the IP address and port at which to connect, typically
based on resolution of a fully qualified donmain nane
(Section 3.2)

2. Open a TCP connection
3. Open an XM. stream (Section 4.2)
4. Preferably negotiate TLS for channel encryption (Section 5)

5. Authenticate using a Sinple Authentication and Security Layer
[SASL] nechani sm (Section 6) *

6. Exchange an unbounded nunber of XM stanzas both directly for the
servers and indirectly on behalf of entities associated with each
server, such as connected clients (Section 8)

7. Cose the XML stream (Section 4.4)
8. Cose the TCP connection

* Interoperability Note: At the tine of witing, nost deployed
servers still use the Server Dial back protocol [XEP-0220] to
provi de weak identity verification instead of using SASL with PKI X
certificates to provide strong authentication, especially in cases
where SASL negotiation would not result in strong authentication
anyway (e.g., because TLS negotiation was not nandated by the peer
server, or because the PKI X certificate presented by the peer
server during TLS negotiation is self-signed and has not been
previously accepted); for details, see [XEP-0220]. The sol utions
specified in this docunent offer a significantly stronger |evel of
security (see also Section 13.6).

Thi s docunent specifies how clients connect to servers and specifies
the basic semantics of XM. stanzas. However, this docunent does not
define the "payl oads" of the XM. stanzas that mi ght be exchanged once
a connection is successfully established; instead, those payl oads are
defined by various XMPP extensions. For exanple, [XMPP-IM defines
extensions for basic instant nmessagi ng and presence functionality.

In addition, various specifications produced in the XSF' s XEP series
[XEP-0001] define extensions for a wi de range of applications.

Sai nt - Andr e St andards Track [Page 10]

RFC 6120 XMPP Cor e March 2011

1. 4. Term nol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMMENDED', "MAY", and
"OPTIONAL" in this docunment are to be interpreted as described in RFC
2119 [KEYWORDS] .

Certain security-related terns are to be understood in the sense
defined in [SEC- TERVS]; such terms include, but are not linmted to,

"assurance", "attack", "authentication", "authorization"
"certificate", "certification authority”, "certification path",
"confidentiality", "credential", "downgrade", "encryption", "hash
value", "identity", "integrity", "signature", "self-signed
certificate", "sign", "spoof", "tanper", "trust", "trust anchor"

"val idate", and "verify".

Certain terms related to certificates, domains, and application
service identity are to be understood in the sense defined in

[TLS-CERTS]; these include, but are not linmted to, "PKIX
certificate", "source domain", "derived donmain", and the identifier
types "CN-ID', "DNS-1D', and "SRV-ID"

O her security-related terns are to be understood in the sense
defined in the referenced specifications (for exanple, "denial of
service" as described in [DOS] or "end entity certificate" as
described in [PKIX]).

The term "whitespace" is used to refer to any character or characters
mat ching the "S" production from[XM], i.e., one or nore instances
of the SP, HTAB, CR, or LF rules defined in [ABNF].

The ternms "local part", "domainpart", and "resourcepart" are defined
i n [XMPP- ADDR] .

The term"bare JID' refers to an XMPP address of the form
<l ocal part @onmi npart> (for an account at a server) or of the form
<domai npart> (for a server).

The term"full JID' refers to an XMPP address of the form

<l ocal part @onai npart/resourcepart> (for a particular authorized
client or device associated with an account) or of the form
<domai npart/resourcepart> (for a particular resource or script
associated with a server).

The term"XM. streani (also "stream'') is defined under Section 4.1.

Sai nt - Andr e St andards Track [Page 11]

RFC 6120 XMPP Cor e March 2011

The term " XM. stanza" (al so "stanza") is defined under Section 4.1.
There are three kinds of stanzas: nessage, presence, and | Q (short
for "Info/Query"). These comunication prinmtives are defined under
Sections 8.2.1, 8.2.2, and 8.2.3, respectively.

The term"originating entity" refers to the entity that first
generates a stanza that is sent over an XMPP network (e.g., a
connected client, an add-on service, or a server). The term
"generated stanza" refers to the stanza so generated.

The term "input streant designates an XM stream over which a server
receives data froma connected client or renote server, and the term
"out put streant designates an XM. stream over which a server sends
data to a connected client or renote server. The following termns
desi gnate sonme of the actions that a server can perform when
processing data received over an input stream

route: pass the data to a renote server for direct processing by
the renpte server or eventual delivery to a client associated
with the renote server

deliver: pass the data to a connected client

ignore: discard the data wi thout acting upon it or returning an
error to the sender

Wien the term"ignore" is used with regard to client processing of
data it receives, the phrase "without acting upon it" explicitly
i ncl udes not presenting the data to a human user

Fol lowing the "XM. Notation" used in [IRI] to represent characters
that cannot be rendered in ASCI|-only docunents, some exanples in
this docunent use the form"&#x...." as a notational device to
represent [UNI CODE] characters (e.g., the string "ř" stands
for the Unicode character LATIN SMALL LETTER R WTH CARON); this form
is definitely not to be sent over the wire in XMPP systens.

Consistent with the convention used in [URI] to represent Uniform
Resource ldentifiers, XMPP addresses in running text are encl osed
between '<’ and '>' (although natively they are not URIS).

In exanpl es, |ines have been wrapped for inproved readability,
"[...]" nmeans elision, and the follow ng prepended strings are used
(these prepended strings are not to be sent over the wire):

o C a client

o E

any XMPP entity

Sai nt - Andr e St andards Track [Page 12]

RFC 6120 XMPP Cor e March 2011

o |: =aninitiating entity
o P: = a peer server

o0 R = areceiving entity

o0 S = a server

o S1: = serverl

0 S2: = server?2

Readers need to be aware that the exanples are not exhaustive and
that, in exanples for sone protocol flows, the alternate steps shown
woul d not necessarily be triggered by the exact data sent in the
previous step; in all cases the protocol definitions specified in
this docunment or in normatively referenced docunents rul e over any
exanpl es provided here. All exanples are fictional and the

i nformati on exchanged (e.g., usernanmes and passwords) does not
represent any existing users or servers.

2. Architecture

XMPP provides a technol ogy for the asynchronous, end-to-end exchange
of structured data by neans of direct, persistent XM. streans anpong a
di stributed network of globally addressable, presence-aware clients
and servers. Because this architectural style involves ubiquitous
know edge of network availability and a conceptually unlinited nunber
of concurrent information transactions in the context of a given
client-to-server or server-to-server session, we |abel it
"Availability for Concurrent Transactions" (ACT) to distinguish it
fromthe "Representational State Transfer" [REST] architectural style
famliar fromthe Wrld Wde Wb. Al though the architecture of XMPP
is simlar in inportant ways to that of email (see [EMAIL-ARCH]), it

i ntroduces several nodifications to facilitate conmunication in close
toreal time. The salient features of this ACTive architectura

style are as foll ows.

2.1. dobal Addresses

As with email, XMPP uses globally unique addresses (based on the
Domai n Nane System) in order to route and deliver nessages over the
network. Al XMPP entities are addressable on the network, nost
particularly clients and servers but also various additional services
that can be accessed by clients and servers. |In general, server
addresses are of the form <domai npart> (e.g., <imexanple.conp),
accounts hosted at a server are of the form <l ocal part @omai npart >
(e.g., <juliet@mexanple.conr, called a "bare JID'), and a

Sai nt - Andr e St andards Track [Page 13]

RFC 6120 XMPP Cor e March 2011

particul ar connected device or resource that is currently authorized
for interaction on behalf of an account is of the form

<l ocal part @onei npart/resourcepart> (e.g.
<juliet@m exanpl e. com bal cony>, called a "full JID"). For

hi storical reasons, XMPP addresses are often called Jabber IDs or
JIDs. Because the fornmal specification of the XVMPP address fornmat
depends on internationalization technologies that are in flux at the
time of witing, the format is defined in [XMPP- ADDR] instead of this
docunent. The terms "local part", "domainpart", and "resourcepart"
are defined nore formally in [XMPP-ADDR] .

2. 2. Presence

XMPP includes the ability for an entity to advertise its network
availability or "presence" to other entities. 1In XWPP, this
availability for comrunication is signaled end-to-end by nmeans of a
dedi cated conmuni cation primtive: the <presence/> stanza. Although
know edge of network availability is not strictly necessary for the
exchange of XMPP nessages, it facilitates real-time interaction
because the originator of a nessage can know before initiating
communi cation that the intended recipient is online and avail abl e.
End-to-end presence is defined in [XMPP-1 M.

2.3. Persistent Streans

Avail ability for conmunication is also built into each point-to-point
"hop" through the use of persistent XM streans over |long-lived TCP
connections. These "al ways-on" client-to-server and server-to-server
streanms enabl e each party to push data to the other party at any tine
for imediate routing or delivery. XM streans are defined under
Section 4.

2.4, Structured Data

The basic protocol data unit in XMPP is not an XM. stream (which
sinmply provides the transport for point-to-point conmunication) but
an XML "stanza", which is essentially a fragnent of XM. that is sent
over a stream The root element of a stanza includes routing
attributes (such as "fronf and "to" addresses), and the child

el ements of the stanza contain a payload for delivery to the intended
reci pient. XM stanzas are defined under Section 8.

2.5. Distributed Network of Clients and Servers
In practice, XMPP consists of a network of clients and servers that
i nter-communi cate (however, comuni cation between any two given

depl oyed servers is strictly discretionary and a matter of |oca
service policy). Thus, for exanple, the user <juliet@m exanple.conpr

Sai nt - Andr e St andards Track [Page 14]

RFC 6120 XMPP Cor e March 2011

associated with the server <imexanple.con> night be able to exchange
nmessages, presence, and other structured data with the user
<roneo@xanpl e. net> associ ated with the server <exanple.net> This
pattern is famliar from nessaging protocols that make use of gl oba
addresses, such as the email network (see [SMIP] and [EMAI L- ARCH]).
As a result, end-to-end comunication in XMPP is |logically peer-to-
peer but physically client-to-server-to-server-to-client, as
illustrated in the follow ng di agram

exanple.net <-------------- > i m exanpl e. com
N N
% %
roneo@xanpl e. net juliet@m exanpl e. com

Figure 1: Distributed dient-Server Architecture

I nformational Note: Architectures that enploy XM streans
(Section 4) and XML stanzas (Section 8) but that establish peer-

t o- peer connections directly between clients using technol ogi es
based on [LI NKLOCAL] have been depl oyed, but such architectures
are not defined in this specification and are best described as
"XMPP-1ike"; for details, see [XEP-0174]. |In addition, XM
streans can be established end-to-end over any reliable transport,
i ncludi ng extensions to XMPP itsel f; however, such nethods are out
of scope for this specification

The foll owi ng paragraphs describe the responsibilities of clients and
servers on the network.

Aclient is an entity that establishes an XM. streamwi th a server by
aut henticating using the credentials of a registered account (via
SASL negotiation (Section 6)) and that then conpl etes resource

bi nding (Section 7) in order to enable delivery of XM stanzas

bet ween the server and the client over the negotiated stream The
client then uses XMPP to conmunicate with its server, other clients,
and any other entities on the network, where the server is
responsi bl e for delivering stanzas to other connected clients at the
sane server or routing themto renote servers. Miltiple clients can
connect simultaneously to a server on behalf of the same registered
account, where each client is differentiated by the resourcepart of
an XWPP address (e.g., <juliet@mexanple.conl bal cony> vs.
<juliet@m exanpl e. conf chanber>), as defined under [XMPP-ADDR] and
Section 7.

Sai nt - Andr e St andards Track [Page 15]

RFC 6120 XMPP Cor e March 2011

A server is an entity whose prinmary responsibilities are to:

o Manage XML streans (Section 4) with connected clients and deliver
XM. stanzas (Section 8) to those clients over the negotiated
streams; this includes responsibility for ensuring that a client
aut henticates with the server before being granted access to the
XMPP net wor K.

0 Subject to local service policies on server-to-server
communi cati on, manage XM. streams (Section 4) with renote servers
and route XML stanzas (Section 8) to those servers over the
negoti at ed streans.

Dependi ng on the application, the secondary responsibilities of an
XMPP server can include:

0 Storing data that is used by clients (e.g., contact lists for
users of XMPP-based instant nessagi ng and presence applications as
defined in [XMPP-IM); in this case, the relevant XM. stanza is
handl ed directly by the server itself on behalf of the client and
is not routed to a renmpte server or delivered to a connected
client.

0 Hosting add-on services that also use XMPP as the basis for
communi cati on but that provide additional functionality beyond
that defined in this docunment or in [XMPP-IM; exanples include
mul ti-user conferencing services as specified in [XEP-0045] and
publ i sh-subscri be services as specified in [XEP-0060].

3. TCP Binding
3.1. Scope

As XMPP is defined in this specification, an initiating entity
(client or server) MIST open a Transm ssion Control Protocol [TCP]
connection to the receiving entity (server) before it negotiates XM
streans wWith the receiving entity. The parties then maintain that
TCP connection for as long as the XML streans are in use. The rules
specified in the followi ng sections apply to the TCP bi ndi ng.

Informational Note: There is no necessary coupling of XM. streans
to TCP, and other transports are possible. For exanple, two
entities could connect to each other by neans of [HTTP] as
specified in [XEP-0124] and [XEP-0206]. However, this
specification defines only a binding of XMPP to TCP

Sai nt - Andr e St andards Track [Page 16]

RFC 6120 XMPP Cor e March 2011

3.2. Resolution of Fully Qualified Donai n Nanes

Because XML streans are sent over TCP, the initiating entity needs to
determne the IPv4 or I Pv6 address (and port) of the receiving entity
before it can attenpt to open an XML stream Typically this is done
by resolving the receiving entity’'s fully qualified domain nane or
FQDN (see [DNS- CONCEPTS]) .

3.2.1. Preferred Process: SRV Lookup

The preferred process for FQDN resolution is to use [DNS-SRV] records
as foll ows:

1. The initiating entity constructs a DNS SRV query whose inputs
are:

* a Service of "xmpp-client” (for client-to-server connections)
or "xnpp-server" (for server-to-server connections)

* a Proto of "tcp

* a Name corresponding to the "origin domain" [TLS-CERTS] of the
XMPP service to which the initiating entity wi shes to connect
(e.g., "exanple.net" or "imexanple.cont)

2. The result is a query such as

_Xnpp-client. tcp.exanple.net." or
_Xmpp-server. _tcp.i mexanpl e.com"

3. If aresponse is received, it will contain one or nore
conbinations of a port and FDQN, each of which is weighted and
prioritized as described in [DNS-SRV]. (However, if the result
of the SRV | ookup is a single resource record with a Target of
".", i.e., the root domain, then the initiating entity MJST abort
SRV proce55|ng at this point because according to [DNS-SRV] such
a Target "means that the service is decidedly not avail able at
this domain".)

4. The initiating entity chooses at |east one of the returned FQDNs
to resolve (following the rules in [DNS-SRV]), which it does by
performng DNS "A" or "AAAA" | ookups on the FDQN, this wll
result in an I Pv4 or |Pv6 address.

5. The initiating entity uses the I P address(es) fromthe
successfully resol ved FDQN (w th the correspondi ng port nunber
returned by the SRV | ookup) as the connection address for the
receiving entity.

Sai nt - Andr e St andards Track [Page 17]

RFC 6120 XMPP Cor e March 2011

6. If the initiating entity fails to connect using that | P address
but the "A" or "AAAA" | ookups returned nore than one | P address,
then the initiating entity uses the next resolved |IP address for
that FDOQN as the connection address.

7. If the initiating entity fails to connect using all resolved IP
addresses for a given FDQ\, then it repeats the process of
resol ution and connection for the next FQDN returned by the SRV
| ookup based on the priority and weight as defined in [DNS-SRV].

8. If the initiating entity receives a response to its SRV query but
it is not able to establish an XMPP connection using the data
received in the response, it SHOULD NOT attenpt the fallback
process described in the next section (this helps to prevent a
state m smatch between i nbound and out bound connecti ons).

9. |If the initiating entity does not receive a response to its SRV
query, it SHOULD attenpt the fallback process described in the
next section.

3.2.2. Fallback Processes

The fall back process SHOULD be a normal "A" or "AAAA' address record
resolution to deternmine the IPv4 or | Pv6 address of the origin
domai n, where the port used is the "xnmpp-client" port of 5222 for
client-to-server connections or the "xnpp-server" port of 5269 for
server-to-server connections (these are the default ports as
registered with the | ANA as descri bed under Section 14.7).

I f connections via TCP are unsuccessful, the initiating entity night
attenpt to find and use alternative connection nethods such as the
HTTP bi ndi ng (see [XEP-0124] and [XEP-0206]), which m ght be

di scovered using [DNS-TXT] records as described in [XEP-0156].

3.2.3. Wien Not to Use SRV

If the initiating entity has been explicitly configured to associate
a particular FQDN (and potentially port) with the origin domain of
the receiving entity (say, to "hardcode" an association from an
origin domain of exanple.net to a configured FQDN of

apps. exanple.com, the initiating entity is encouraged to use the
configured nane instead of perforning the preferred SRV resol ution
process on the origin donain.

Sai nt - Andr e St andards Track [Page 18]

RFC 6120 XMPP Cor e March 2011

3.2.4. Use of SRV Records with Add-On Services

Many XMPP servers are inplenmented in such a way that they can host
add- on services (beyond those defined in this specification and

[XMPP-1 M) at DNS domain nanes that typically are "subdomai ns" of the
mai n XMPP service (e.g., conference.exanple.net for a [XEP-0045]
service associated with the exanpl e.net XMPP service) or "subdonai ns"
of the first-level domain of the underlying service (e.g.

muc. exanpl e. com for a [XEP-0045] service associated with the

i m exanpl e.com XMPP service). |If an entity associated with a renote
XMPP server wishes to comunicate with such an add-on service, it
woul d generate an appropriate XM. stanza and the renote server woul d
attenpt to resolve the add-on service’'s DNS donain nane via an SRV

| ookup on resource records such as "_xnpp-

server. _tcp.conference. exanple.net." or "_xnpp-
server._tcp. nuc. exanple.com". Therefore, if the adm nistrators of
an XWMPP service wish to enable entities associated with renote
servers to access such add-on services, they need to advertise the
appropriate " _xnpp-server" SRV records in addition to the " _xnpp-
server" record for their nmain XMPP service. |n case SRV records are
not avail able, the fallback methods described under Section 3.2.2 can
be used to resolve the DNS domai n nanes of add-on services.

3.3. Reconnection

It can happen that an XMPP server goes offline unexpectedly while
servicing TCP connections fromconnected clients and renote servers.
Because t he number of such connections can be quite |arge, the
reconnection algorithmenployed by entities that seek to reconnect
can have a significant inpact on software performance and network
congestion. |If an entity chooses to reconnect, it:

0 SHOULD set the nunber of seconds that expire before reconnecting
to an unpredictabl e nunber between 0 and 60 (this helps to ensure
that not all entities attenpt to reconnect at exactly the sane
nunber of seconds after being disconnected).

0 SHOULD back off increasingly on the tinme between subsequent
reconnection attenpts (e.g., in accordance with "truncated binary
exponential backoff" as described in [ETHERNET]) if the first
reconnection attenpt does not succeed.

It is RECOWENDED to nake use of TLS session resunption [TLS- RESUVE]
when reconnecting. A future version of this docunent, or a separate
specification, nmight provide nore detail ed guidelines regarding

nmet hods for speeding the reconnection process.

Sai nt - Andr e St andards Track [Page 19]

RFC 6120 XMPP Cor e March 2011

3.

4.

4.

4., Reliability

The use of long-lived TCP connections in XMPP inplies that the
sendi ng of XM. stanzas over XM streans can be unreliable, since the
parties to a long-lived TCP connection might not discover a
connectivity disruption in a tinely manner. At the XMPP application
| ayer, long connectivity disruptions can result in undelivered
stanzas. Although the core XMPP technol ogy defined in this

speci ficati on does not contain features to overcone this |ack of
reliability, there exist XMPP extensions for doing so (e.g.

[XEP-0198]) .

XML Streans
1. Stream Fundanment al s

Two fundanmental concepts make possible the rapid, asynchronous
exchange of relatively small payl oads of structured information
between XMPP entities: XM. streams and XM. stanzas. These terns are
defined as foll ows.

Definition of XML Stream An XML streamis a container for the
exchange of XM el enents between any two entities over a network.
The start of an XML streamis denoted unanbi guously by an opening
"stream header" (i.e., an XM. <streanm> tag with appropriate
attributes and nanespace declarations), while the end of the XM
streamis denoted unanbi guously by a closing XM. </streane tag.
During the life of the stream the entity that initiated it can
send an unbounded nunber of XM el enents over the stream either
el ements used to negotiate the stream(e.g., to conplete TLS
negoti ati on (Section 5) or SASL negotiation (Section 6)) or XM
stanzas. The "initial streant is negotiated fromthe initiating
entity (typically a client or server) to the receiving entity
(typically a server), and can be seen as corresponding to the
initiating entity’s "connection to" or "session with" the
receiving entity. The initial stream enabl es unidirectiona
communi cation fromthe initiating entity to the receiving entity;
in order to enabl e exchange of stanzas fromthe receiving entity
to the initiating entity, the receiving entity MJST negotiate a
streamin the opposite direction (the "response streant).

Definition of XML Stanza: An XM stanza is the basic unit of meaning
in XMPP. A stanza is a first-level elenent (at depth=1 of the
stream whose el enent nane is "nessage", "presence", or "iq" and
whose qualifying namespace is 'jabber:client’ or ’'jabber:server’
By contrast, a first-level elenment qualified by any other
namespace is not an XM. stanza (streamerrors, stream features
TLS-related el enents, SASL-rel ated el enents, etc.), nor is a

Sai nt - Andr e St andards Track [Page 20]

RFC 6120 XMPP Cor e March 2011

<nessage/ >, <presence/>, or <iq/> elenment that is qualified by the
"jabber:client’ or 'jabber:server’ nanespace but that occurs at a
depth other than one (e.g., a <message/> elenment contained within
an extension el ement (Section 8.4) for reporting purposes), nor is
a <message/ >, <presence/>, or <iq/> elenent that is qualified by a
nanespace other than 'jabber:client’ or 'jabber:server’. An XM
stanza typically contains one or nore child elenents (wth
acconpanying attributes, elenments, and XM. character data) as
necessary in order to convey the desired information, which MAY be
qualified by any XML nanmespace (see [XM.-NAMES] as well as

Section 8.4 in this specification).

There are three kinds of stanzas: nessage, presence, and | Q (short
for "Info/Query"). These stanza types provide three different

conmuni cation primtives: a "push" mechani smfor generalized
messagi ng, a specialized "publish-subscribe" mechani smfor
broadcasting i nformati on about network availability, and a "request-
response” nechani smfor nore structured exchanges of data (simlar to
[HTTP]). Further explanations are provided under Section 8.2.1,
Section 8.2.2, and Section 8.2.3, respectively.

Consi der the exanple of a client’s connection to a server. The
client initiates an XML stream by sending a stream header to the
server, preferably preceded by an XM. declaration specifying the XM
versi on and the character encodi ng supported (see Section 11.5 and
Section 11.6). Subject to local policies and service provisioning,
the server then replies with a second XM. stream back to the client,
again preferably preceded by an XM. declaration. Once the client has
conmpl eted SASL negotiation (Section 6) and resource binding

(Section 7), the client can send an unbounded nunmber of XM. stanzas
over the stream \Wen the client desires to close the stream it
sinmply sends a closing </streant tag to the server as further

descri bed under Section 4.4.

In essence, then, one XM. stream functions as an envel ope for the XM
stanzas sent during a session and another XM. stream functions as an
envel ope for the XML stanzas received during a session. W can
represent this in a sinplistic fashion as foll ows.

Sai nt - Andr e St andards Track [Page 21]

RFC 6120 XMPP Cor e March 2011

| <presence> | |
| <show > |
| </ presence> |

<message to='foo >	
<body/>	
</ nmessage>	

<iq to=' bar’

| | |
| type='get’ > |

| <query/ > | |
| </ig> | |
[=--mmmm e [=--mmmmm e |
| | <iq frome bar’

| | type="result’ >

| | <query/> |
| | </ig> |
[=-mmmmm e R |
| [o] | |
[=-mmmmmm e [=-mmmmm e |
| | [-] |
[---mmmmm [---mmmm |
| </streanr |
R [=-mmmmm e |
| | </strean |
Fmm e e e Fmm e e e +

Figure 2: A Sinmplistic View of Two Streans

Those who are accustoned to thinking of XML in a docunent-centric
manner might find the foll owi ng anal ogi es usef ul

o0 The two XM. streans are |ike two "docunents" (matching the
"docunment” production from[XM]) that are built up through the
accunul ation of XM. stanzas.

0 The root <stream > element is |like the "document entity" for each
"docunment" (as described in Section 4.8 of [XWM]).

o0 The XML stanzas sent over the streans are like "fragnments" of the
"docunents" (as described in [XM.- FRAG).

Sai nt - Andr e St andards Track [Page 22]

RFC 6120 XMPP Cor e March 2011
However, these descriptions are nerely anal ogi es, because XMPP does
not deal in docunments and fragments but in streans and stanzas.

The remai nder of this section defines the followi ng aspects of XM
streanms (along with related topics):

0 How to open a stream (Section 4.2)
0 The stream negotiation process (Section 4.3)
0 Howto close a stream (Section 4.4)
0 The directionality of XML streans (Section 4.5)
0 How to handle peers that are silent (Section 4.6)
o The XML attributes of a stream (Section 4.7)
0 The XM nanespaces of a stream (Section 4.8)
o FError handling related to XM streans (Section 4.9)
4.2. Opening a Stream
After connecting to the appropriate | P address and port of the
receiving entity, the initiating entity opens a streamby sending a
stream header (the "initial streamheader"”) to the receiving entity.
I: <?xm version="1.0"?>
<stream stream
from="juliet@m exanpl e. com
to="im exanpl e. com
version="1.0
xm 1 ang="en’
xm ns="j abber:client’
xm ns: strean http://etherx.jabber.org/streans’ >

The receiving entity then replies by sending a stream header of its
own (the "response stream header") to the initiating entity.

Sai nt - Andr e St andards Track [Page 23]

RFC 6120 XMPP Cor e March 2011

R <?xm version="1.0" ?>
<stream stream

from=" i m exanpl e. comi
i d=" ++TR84Sn6A3hnt 3Q065SNAbbk3Y=
to="juliet@m exanpl e. coni
version="1.0
xm ;1 ang='en
xm ns='j abber:client’
xm ns: streane’ http://etherx.jabber.org/streans’ >

The entities can then proceed with the renai nder of the stream
negoti ati on process.

4.3. Stream Negotiation
4.3.1. Basic Concepts

Because the receiving entity for a streamacts as a gatekeeper to the
domains it services, it inposes certain conditions for connecting as
a client or as a peer server. At a mnimum the initiating entity
needs to authenticate with the receiving entity before it is allowed
to send stanzas to the receiving entity (for client-to-server streans
this means using SASL as descri bed under Section 6). However, the
receiving entity can consider conditions other than authentication to
be nmandat ory-to-negotiate, such as encryption using TLS as descri bed
under Section 5. The receiving entity inforns the initiating entity
about such conditions by comrunicating "stream features": the set of
particul ar protocol interactions that the initiating entity needs to
compl ete before the receiving entity will accept XM. stanzas fromthe
initiating entity, as well as any protocol interactions that are

vol untary-to-negotiate but that mght inprove the handling of an XM
stream (e.g., establishment of application-layer conpression as
described in [XEP-0138]).

The existence of conditions for connecting inplies that streans need
to be negotiated. The order of layers (TCP, then TLS, then SASL,
then XWMPP as described under Section 13.3) inplies that stream
negotiation is a nulti-stage process. Further structure is inposed
by two factors: (1) a given streamfeature mght be offered only to
certain entities or only after certain other features have been
negotiated (e.g., resource binding is offered only after SASL

aut hentication), and (2) streamfeatures can be either mandatory-to-
negotiate or voluntary-to-negotiate. Finally, for security reasons
the parties to a streamneed to discard know edge that they gai ned
during the negotiation process after successfully conpleting the
protocol interactions defined for certain features (e.g., TLS in al
cases and SASL in the case when a security layer mght be

Sai nt - Andr e St andards Track [Page 24]

RFC 6120 XMPP Cor e March 2011

established, as defined in the specification for the rel evant SASL
nmechanisn). This is done by flushing the old stream context and
exchangi ng new stream headers over the existing TCP connection

4, 3. 2. St ream Feat ures For mat

If the initiating entity includes in the initial stream header the
"version' attribute set to a value of at least "1.0" (see

Section 4.7.5), after sending the response stream header the
receiving entity MIST send a <features/> child element (typically
prefixed by the stream nanespace prefix as descri bed under

Section 4.8.5) to the initiating entity in order to announce any
conditions for continuation of the stream negotiation process. Each
condition takes the formof a child element of the <features/>

el ement, qualified by a nanespace that is different fromthe stream
namespace and the content namespace. The <features/> elenent can
contain one child, contain nultiple children, or be enpty.

| mpl enentati on Note: The order of child elenents contained in any
given <features/> elenment is not significant.

If a particular streamfeature is or can be nmandatory-to-negoti ate,
the definition of that feature needs to do one of the follow ng:

1. Declare that the feature is always nandatory-to-negotiate (e.qg.
this is true of resource binding for XMPP clients); or

2. Specify a way for the receiving entity to flag the feature as
mandat ory-to-negotiate for this interaction (e.g., for STARTTLS
this is done by including an enpty <required/ > elenent in the
advertisenent for that streamfeature, but that is not a generic
format for all streamfeatures); it is RECOMVENDED t hat stream
feature definitions for new mandatory-to-negotiate features do so
by including an enpty <required/> elenent as is done for
STARTTLS

I nformati onal Note: Because there is no generic format for
indicating that a feature is nmandatory-to-negotiate, it is
possible that a feature that is not understood by the initiating
entity might be considered mandatory-to-negotiate by the receiving
entity, resulting in failure of the stream negoti ati on process.

Al t hough such an out cone woul d be undesirabl e, the working group
deenmed it rare enough that a generic format was not needed.

For security reasons, certain streamfeatures necessitate the
initiating entity to send a new initial stream header upon successfu
negoti ation of the feature (e.g., TLS in all cases and SASL in the
case when a security layer mght be established). |If this is true of

Sai nt - Andr e St andards Track [Page 25]

RFC 6120 XMPP Cor e March 2011

a given streamfeature, the definition of that feature needs to
specify that a streamrestart is expected after negotiation of the
feature.

A <features/> element that contains at |east one nmandatory-to-
negotiate feature indicates that the stream negotiation is not
conmplete and that the initiating entity MJST negotiate further
features

R <stream features>
<starttls xm ns="urn:ietf:parans: xm :ns: xmpp-tls’>
<required/ >
</starttls>
</ stream f eat ures>

A <features/> el ement MAY contain nore than one nandatory-to-
negotiate feature. This neans that the initiating entity can choose
anong the mandatory-to-negotiate features at this stage of the stream
negoti ati on process. As an exanple, perhaps a future technology wll
performroughly the same function as TLS, so the receiving entity

nm ght advertise support for both TLS and the future technol ogy at the
same stage of the stream negotiation process. However, this applies
only at a given stage of the stream negotiati on process and does not
apply to features that are mandatory-to-negotiate at different stages
(e.g., the receiving entity would not advertise both STARTTLS and
SASL as mandatory-to-negotiate, or both SASL and resource binding as
mandat ory-t o- negoti ate, because TLS would need to be negoti at ed

bef ore SASL and because SASL woul d need to be negoti ated before
resource binding).

A <features/> el enent that contains both nandatory-to-negotiate and
vol untary-to-negotiate features indicates that the negotiation is not
conplete but that the initiating entity MAY conplete the voluntary-
to-negotiate feature(s) before it attenpts to negotiate the

mandat ory-to-negoti ate feature(s).

R <stream features>
<bi nd xm ns="urn:ietf:parans: xm :ns: xnmpp-bind />
<conpression xm ns="http://jabber. org/features/conpress’ >
<net hod>zl i b</ net hod>
<net hod>| zw</ et hod>
</ conpr essi on>
</ stream f eatures>

A <features/> el enent that contains only voluntary-to-negotiate
features indicates that the stream negotiation is conplete and that
the initiating entity is cleared to send XM. stanzas, but that the
initiating entity MAY negotiate further features if desired.

Sai nt - Andr e St andards Track [Page 26]

RFC 6120 XMPP Cor e March 2011

R <stream feat ures>
<conpression xm ns="http://jabber.org/features/conpress’ >
<net hod>zl i b</ net hod>
<net hod>| zw</ et hod>
</ conpr essi on>
</ stream f eat ures>

An empty <features/> elenent indicates that the stream negotiation is
complete and that the initiating entity is cleared to send XM
st anzas.

R <stream features/>
4. 3. 3. Restarts

On successful negotiation of a feature that necessitates a stream
restart, both parties MJIST consider the previous streamto be

repl aced but MJUST NOT send a closing </streankt tag and MJST NOT
term nate the underlying TCP connection; instead, the parties MJST
reuse the existing connection, which night be in a new state (e.g.
encrypted as a result of TLS negotiation). The initiating entity
then MUST send a new initial stream header, which SHOULD be preceded
by an XML decl aration as described under Section 11.5. \When the
receiving entity receives the newinitial stream header, it MJST
generate a new stream | D (instead of reusing the old stream | D)

bef ore sending a new response stream header (which SHOULD be preceded
by an XM. decl aration as described under Section 11.5).

4.3.4. Resending Features

The receiving entity MJST send an updated |list of streamfeatures to
the initiating entity after a streamrestart. The list of updated
features MAY be enpty if there are no further features to be
advertised or MAY include any conbination of features.

4.3.5. Conpletion of Stream Negoti ation

The receiving entity indicates conpletion of the stream negotiation
process by sending to the initiating entity either an enpty
<features/> elenment or a <features/> elenent that contains only

vol untary-to-negotiate features. After doing so, the receiving
entity MAY send an enpty <features/> elenent (e.g., after negotiation
of such voluntary-to-negotiate features) but MJUST NOT send additiona
stream features to the initiating entity (if the receiving entity has
new features to offer, preferably linited to mandatory-to-negotiate
or security-critical features, it can sinply close the streamwith a
<reset/> streamerror (Section 4.9.3.16) and then advertise the new
features when the initiating entity reconnects, preferably closing

Sai nt - Andr e St andards Track [Page 27]

RFC 6120 XMPP Cor e March 2011

existing streans in a staggered way so that not all of the initiating
entities reconnect at once). Once streamnegotiation is conplete,
the initiating entity is cleared to send XM. stanzas over the stream
for as long as the streamis naintained by both parties.

I nformational Note: Resource binding as specified under Section 7
is an historical exception to the foregoing rule, since it is
mandat ory-to-negotiate for clients but uses XML stanzas for
negoti ati on purposes.

The initiating entity MUST NOT attenpt to send XM stanzas

(Section 8) to entities other than itself (i.e., the client’s
connected resource or any other authenticated resource of the
client’s account) or the server to which it is connected until stream
negoti ati on has been conpleted. Even if the initiating entity does
attenpt to do so, the receiving entity MJST NOT accept such stanzas
and MUST cl ose the streamw th a <not-authorized/ > stream error
(Section 4.9.3.12). This rule applies to XM. stanzas only (i.e.
<nessage/ >, <presence/>, and <ig/> elenents qualified by the content
namespace) and not to XM. el ements used for stream negotiation (e.g.
el ements used to conplete TLS negotiation (Section 5) or SASL
negoti ati on (Section 6)).

4,3.6. Determ nation of Addresses

After the parties to an XM. stream have conpl eted the appropriate
aspects of stream negotiation, the receiving entity for a stream MJST
determine the initiating entity’'s JID

For client-to-server comuni cation, both SASL negotiation (Section 6)
and resource binding (Section 7) MJST be conpl eted before the server
can determine the client’s address. The client’s bare JID

(<l ocal part @omai npart>) MJST be the authorization identity (as
defined by [SASL]), either (1) as directly comruni cated by the client
during SASL negotiation (Section 6) or (2) as derived by the server
fromthe authentication identity if no authorization identity was
specified during SASL negotiation. The resourcepart of the full JID
(<l ocal part @omai npart/resourcepart>) MJST be the resource negotiated
by the client and server during resource binding (Section 7). A
client MJUST NOT attenpt to guess at its JID but instead MIST consi der
its JIDto be whatever the server returns to it during resource

bi nding. The server MJST ensure that the resulting JID (including

| ocal part, donminpart, resourcepart, and separator characters)
conforns to the canonical format for XMPP addresses defined in

[XMPP- ADDR] ; to neet this restriction, the server MAY replace the JID
sent by the client with the canonicalized JID as deternined by the
server and comunicate that JID to the client during resource

bi ndi ng.

Sai nt - Andr e St andards Track [Page 28]

RFC 6120 XMPP Cor e March 2011

For server-to-server comuni cation, the initiating server’s bare JID
(<domai npart>) MJST be the authorization identity (as defined by

[SASL]), either (1) as directly communicated by the initiating server
during SASL negotiation (Section 6) or (2) as derived by the

recei ving server fromthe authentication identity if no authorization
identity was specified during SASL negotiation. 1In the absence of
SASL negotiation, the receiving server MAY consider the authorization
identity to be an identity negotiated within the rel evant
verification protocol (e.g., the 'from attribute of the <result/>

el ement in Server Dial back [XEP-0220]).

Security Warning: Because it is possible for a third party to
tanper with information that is sent over the stream before a
security layer such as TLS is successfully negotiated, it is

advi sable for the receiving server to treat any such unprotected
information with caution; this applies especially to the 'from
and 'to’ addresses on the first initial stream header sent by the
initiating entity.

4.3.7. Flow Chart
We sumari ze the foregoing rules in the foll owi ng non-normative fl ow

chart for the stream negotiation process, presented fromthe
perspective of the initiating entity.

Sai