
A YANG Data Model for Network Topologies

Abstract

This document defines an abstract (generic, or base) YANG data model for network/service topologies

and inventories. The data model serves as a base model that is augmented with technology-specific

details in other, more specific topology and inventory data models.

Stream: Internet Engineering Task Force (IETF)

RFC: 8345

Category: Standards Track

Published: March 2018

ISSN: 2070-1721

Authors:

A. Clemm

Huawei

J. Medved

Cisco

R. Varga

Pantheon Technologies SRO

N. Bahadur

Bracket Computing

H. Ananthakrishnan

Packet Design

X. Liu

Jabil

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus

of the IETF community. It has received public review and has been approved for publication by the

Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in

Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback on it

may be obtained at https://www.rfc-editor.org/info/rfc8345.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

Clemm, et al. Standards Track Page 1

https://www.rfc-editor.org/info/rfc8345.txt

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document.

Please review these documents carefully, as they describe your rights and restrictions with respect to

this document. Code Components extracted from this document must include Simplified BSD License

text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as

described in the Simplified BSD License.

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 2

Table of Contents

1. Introduction

2. Key Words

3. Definitions and Abbreviations

4. Model Structure Details

4.1. Base Network Model

4.2. Base Network Topology Data Model

4.3. Extending the Data Model

4.4. Discussion and Selected Design Decisions

4.4.1. Container Structure

4.4.2. Underlay Hierarchies and Mappings

4.4.3. Dealing with Changes in Underlay Networks

4.4.4. Use of Groupings

4.4.5. Cardinality and Directionality of Links

4.4.6. Multihoming and Link Aggregation

4.4.7. Mapping Redundancy

4.4.8. Typing

4.4.9. Representing the Same Device in Multiple Networks

4.4.10. Supporting Client-Configured and System-Controlled Network Topologies

4.4.11. Identifiers of String or URI Type

5. Interactions with Other YANG Modules

6. YANG Modules

6.1. Defining the Abstract Network: ietf-network

6.2. Creating Abstract Network Topology: ietf‑network‑topology

7. IANA Considerations

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 3

1. Introduction

This document introduces an abstract (base) YANG

8. Security Considerations

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Model Use Cases

A.1. Fetching Topology from a Network Element

A.2. Modifying TE Topology Imported from an Optical Controller

A.3. Annotating Topology for Local Computation

A.4. SDN Controller-Based Configuration of Overlays on Top of Underlays

Appendix B. Companion YANG Data Models for Implementations Not Compliant with NMDA

B.1. YANG Module for Network State

B.2. YANG Module for Network Topology State

Appendix C. An Example

 Acknowledgments

 Contributors

 Authors' Addresses

[RFC7950] data model [RFC3444] to represent

networks and topologies. The data model is divided into two parts: The first part of the data model

defines a network data model that enables the definition of network hierarchies, or network stacks (i.e.,

networks that are layered on top of each other) and maintenance of an inventory of nodes contained in

a network. The second part of the data model augments the basic network data model with information

to describe topology information. Specifically, it adds the concepts of "links" and "termination points"

to describe how nodes in a network are connected to each other. Moreover, the data model introduces

vertical layering relationships between networks that can be augmented to cover both network

inventories and network/service topologies.

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 4

Although it would be possible to combine both parts into a single data model, the separation facilitates

integration of network topology and network inventory data models, because it allows network

inventory information to be augmented separately, and without concern for topology, into the network

data model.

The data model can be augmented to describe the specifics of particular types of networks and

topologies. For example, an augmenting data model can provide network node information with

attributes that are specific to a particular network type. Examples of augmenting models include data

models for Layer 2 network topologies; Layer 3 network topologies such as unicast IGP, IS-IS

The basic data models introduced in this document are generic in nature and can be applied to many

network and service topologies and inventories. The data models allow applications to operate on an

inventory or topology of any network at a generic level, where the specifics of particular inventory/

topology types are not required. At the same time, where data specific to a network type comes into

play and the data model is augmented, the instantiated data still adheres to the same structure and is

represented in a consistent fashion. This also facilitates the representation of network hierarchies and

dependencies between different network components and network types.

The abstract (base) network YANG module introduced in this document, entitled "ietf-network"

(Section 6.1), contains a list of abstract network nodes and defines the concept of "network hierarchy"

(network stack). The abstract network node can be augmented in inventory and topology data models

with inventory-specific and topology-specific attributes. The network hierarchy (stack) allows any

given network to have one or more "supporting networks". The relationship between the base network

data model, the inventory data models, and the topology data models is shown in Figure 1 (dotted lines

in the figure denote possible augmentations to models defined in this document).

[RFC1195], and OSPF [RFC2328]; traffic engineering (TE) data [RFC3209]; or any of the variety of

transport and service topologies. Information specific to particular network types will be captured in

separate, technology-specific data models.

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 5

The network-topology YANG module introduced in this document, entitled "ietf-network-topology"

(Section 6.2), defines a generic topology data model at its most general level of abstraction. The

module defines a topology graph and components from which it is composed: nodes, edges, and

termination points. Nodes (from the "ietf‑network" module) represent graph vertices and links

represent graph edges. Nodes also contain termination points that anchor the links. A network can

contain multiple topologies -- for example, topologies at different layers and overlay topologies. The

data model therefore allows relationships between topologies, as well as dependencies between nodes

and termination points across topologies, to be captured. An example of a topology stack is shown in

Figure 2.

Figure 1 The Network Data Model Structure

 +------------------------+
 | |
 | Abstract Network Model |
 | |
 +------------------------+
 |
 +-------+-------+
 | |
 V V
 +------------+
 | Abstract | : Inventory :
 | Topology | : Model(s) :
 | Model | : :
 +------------+ ''''''''''''''
 |
 +-------------+-------------+-------------+
 | | | |
 V V V V
............
: L1 : : L2 : : L3 : : Service :
: Topology : : Topology : : Topology : : Topology :
: Model : : Model : : Model : : Model :
'''''''''''' '''''''''''' '''''''''''' ''''''''''''

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 6

Figure 2 shows three topology levels. At the top, the "Service" topology shows relationships between

service entities, such as service functions in a service chain. The "L3" topology shows network

elements at Layer 3 (IP), and the "Optical" topology shows network elements at Layer 1. Service

functions in the "Service" topology are mapped onto network elements in the "L3" topology, which in

turn are mapped onto network elements in the "Optical" topology. Two service functions (X1 and X3)

are mapped onto a single L3 network element (Y2); this could happen, for example, if two service

functions reside in the same Virtual Machine (VM) (or server) and share the same set of network

interfaces. A single "L3" network element (Y2) is mapped onto two "Optical" network elements (Z2

and Z). This could happen, for example, if a single IP router attaches to multiple Reconfigurable

Optical Add/Drop Multiplexers (ROADMs) in the optical domain.

Another example of a service topology stack is shown in Figure 3.

Figure 2 Topology Hierarchy (Stack) Example

 +---------------------------------------+
 / _[X1]_ "Service" /
 / _/ : _ /
 / _/ : _ /
 / _/ : _ /
 / / : \ /
 / [X2]__________________[X3] /
+---------:--------------:------:-------+
 : : :
 +----:--------------:----:--------------+
 / : : : "L3" /
 / : : : /
 / : : : /
 / [Y1]_____________[Y2] /
 / * * * /
 / * * * /
+--------------*-------------*--*-------+
 * * *
 +--------*----------*----*--------------+
 / [Z1]_______________[Z2] "Optical" /
 / _ * _/ /
 / _ * _/ /
 / _ * _/ /
 / \ * / /
 / [Z] /
+---------------------------------------+

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 7

Figure 3 shows two VPN service topologies (VPN1 and VPN2) instantiated over a common L3

topology. Each VPN service topology is mapped onto a subset of nodes from the common L3 topology.

There are multiple applications for such a data model. For example, within the context of Interface to

the Routing System (I2RS), nodes within the network can use the data model to capture their

understanding of the overall network topology and expose it to a network controller. A network

controller can then use the instantiated topology data to compare and reconcile its own view of the

network topology with that of the network elements that it controls. Alternatively, nodes within the

network could propagate this understanding to compare and reconcile this understanding either among

themselves or with the help of a controller. Beyond the network element and the immediate context of

I2RS itself, a network controller might even use the data model to represent its view of the topology

that it controls and expose it to applications north of itself. Further use cases where the data model can

be applied are described in

Figure 3 Topology Hierarchy (Stack) Example

 VPN1 VPN2
 +---------------------+ +---------------------+
 / [Y5]... / / [Z5]______[Z3] /
 / / \ : / / : _ / : /
 / / \ : / / : _ / : /
 / / \ : / / : \ / : /
 / [Y4]____[Y1] : / / : [Z2] : /
+------:-------:---:--+ +---:---------:-----:-+
 : : : : : :
 : : : : : :
 : +-------:---:-----:------------:-----:-----+
 : / [X1]__:___:___________[X2] : /
 :/ / _ : : _____/ / : /
 : / _ : _____/ / : /
 /: / \: / / : /
 / : / [X5] / : /
 / : / __/ __ / : /
 / : / ___/ __ / : /
 / : / ___/ \ / : /
 / [X4]__________________[X3]..: /
+--+
 L3 Topology

[USECASE-REQS].

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 8

Datastore:

Data subtree:

IGP:

IS-IS:

OSPF:

In this data model, a network is categorized as either system controlled or not. If a network is system

controlled, then it is automatically populated by the server and represents dynamically learned

information that can be read from the operational state datastore. The data model can also be used to

create or modify network topologies that might be associated with an inventory model or with an

overlay network. Such a network is not system controlled; rather, it is configured by a client.

The data model allows a network to refer to a supporting network, supporting nodes, supporting links,

etc. The data model also allows the layering of a network that is configured on top of a network that is

system controlled. This permits the configuration of overlay networks on top of networks that are

discovered. Specifically, this data model is structured to support being implemented as part of the

ephemeral datastore

2. Key Words

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",

"SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in

this document are to be interpreted as described in BCP 14

3. Definitions and Abbreviations

A conceptual place to store and access information. A datastore might be implemented, for

example, using files, a database, flash memory locations, or combinations thereof. A datastore

maps to an instantiated YANG data tree (definition from

An instantiated data node and the data nodes that are hierarchically contained within it.

Interior Gateway Protocol.

Intermediate System to Intermediate System.

Open Shortest Path First (a link-state routing protocol).

[RFC8342], the requirements for which are defined in Section 3 of [RFC8242].

This allows network topology data that is written, i.e., configured by a client and not system

controlled, to refer to dynamically learned data that is controlled by the system, not configured by a

client. A simple use case might involve creating an overlay network that is supported by the

dynamically discovered IP-routed network topology. When an implementation places written data for

this data model in the ephemeral datastore, such a network MAY refer to another network that is

system controlled.

[RFC2119] [RFC8174] when, and only

when, they appear in all capitals, as shown here.

[RFC8342]).

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 9

SDN:

URI:

VM:

Software-Defined Networking.

Uniform Resource Identifier.

Virtual Machine.

4. Model Structure Details

4.1. Base Network Model

The abstract (base) network data model is defined in the "ietf‑network" module. Its structure is shown

in Figure 4. The notation syntax follows the syntax used in

The data model contains a container with a list of networks. Each network is captured in its own list

entry, distinguished via a network‑id.

A network has a certain type, such as L2, L3, OSPF, or IS-IS. A network can even have multiple types

simultaneously. The type or types are captured underneath the container "network-types". In this

model, it serves merely as an augmentation target; network-specific modules will later introduce new

data nodes to represent new network types below this target, i.e., will insert them below

"network‑types" via YANG augmentation.

When a network is of a certain type, it will contain a corresponding data node. Network types

SHOULD always be represented using presence containers, not leafs of type "empty". This allows the

representation of hierarchies of network subtypes within the instance information. For example, an

instance of an OSPF network (which, at the same time, is a Layer 3 unicast IGP network) would

[RFC8340].

Figure 4 The Structure of the Abstract (Base) Network Data Model

module: ietf-network
 +--rw networks
 +--rw network* [network-id]
 +--rw network-id network-id
 +--rw network-types
 +--rw supporting-network* [network-ref]
 | +--rw network-ref -> /networks/network/network-id
 +--rw node* [node-id]
 +--rw node-id node-id
 +--rw supporting-node* [network-ref node-ref]
 +--rw network-ref
 | -> ../../../supporting-network/network-ref
 +--rw node-ref -> /networks/network/node/node-id

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 10

contain underneath "network‑types" another presence container "l3‑unicast‑igp‑network", which in

turn would contain a presence container "ospf‑network". Actual examples of this pattern can be found

in

A network can in turn be part of a hierarchy of networks, building on top of other networks. Any such

networks are captured in the list "supporting-network". A supporting network is, in effect, an underlay

network.

Furthermore, a network contains an inventory of nodes that are part of the network. The nodes of a

network are captured in their own list. Each node is identified relative to its containing network by a

node-id.

It should be noted that a node does not exist independently of a network; instead, it is a part of the

network that contains it. In cases where the same device or entity takes part in multiple networks, or at

multiple layers of a networking stack, the same device or entity will be represented by multiple nodes,

one for each network. In other words, the node represents an abstraction of the device for the particular

network of which it is a part. To indicate that the same entity or device is part of multiple topologies or

networks, it is possible to create one "physical" network with a list of nodes for each of the devices or

entities. This (physical) network -- the nodes (entities) in that network -- can then be referred to as an

underlay network and as nodes from the other (logical) networks and nodes, respectively. Note that the

data model allows for the definition of more than one underlay network (and node), allowing for

simultaneous representation of layered network topologies and service topologies, and their physical

instantiation.

Similar to a network, a node can be supported by other nodes and map onto one or more other nodes in

an underlay network. This is captured in the list "supporting-node". The resulting hierarchy of nodes

also allows for the representation of device stacks, where a node at one level is supported by a set of

nodes at an underlying level. For example:

• a "router" node might be supported by a node representing a route processor and separate nodes

for various line cards and service modules,

• a virtual router might be supported or hosted on a physical device represented by a separate node,

and so on.

[RFC8346].

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 11

Network data of a network at a particular layer can come into being in one of two ways: (1) the

network data is configured by client applications -- for example, in the case of overlay networks that

are configured by an SDN Controller application, or (2) the network data is automatically controlled by

the system, in the case of networks that can be discovered. It is possible for a configured (overlay)

network to refer to a (discovered) underlay network.

The revised datastore architecture

4.2. Base Network Topology Data Model

The abstract (base) network topology data model is defined in the "ietf‑network‑topology" module. It

builds on the network data model defined in the "ietf‑network" module, augmenting it with links

(defining how nodes are connected) and termination points (which anchor the links and are contained

in nodes). The structure of the network topology module is shown in Figure 5. The notation syntax

follows the syntax used in

[RFC8342] is used to account for those possibilities. Specifically,

for each network, the origin of its data is indicated per the "origin" metadata [RFC7952] annotation (as

defined in [RFC8342]) -- "intended" for data that was configured by a client application and "learned"

for data that is discovered. Network data that is discovered is automatically populated as part of the

operational state datastore. Network data that is configured is part of the configuration and intended

datastores, respectively. Configured network data that is actually in effect is, in addition, reflected in

the operational state datastore. Data in the operational state datastore will always have complete

referential integrity. Should a configured data item (such as a node) have a dangling reference that

refers to a non‑existing data item (such as a supporting node), the configured data item will

automatically be removed from the operational state datastore and thus only appear in the intended

datastore. It will be up to the client application (such as an SDN Controller) to resolve the situation and

ensure that the reference to the supporting resources is configured properly.

[RFC8340].

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 12

A node has a list of termination points that are used to terminate links. An example of a termination

point might be a physical or logical port or, more generally, an interface.

Like a node, a termination point can in turn be supported by an underlying termination point, contained

in the supporting node of the underlay network.

A link is identified by a link-id that uniquely identifies the link within a given topology. Links are

point-to-point and unidirectional. Accordingly, a link contains a source and a destination. Both source

and destination reference a corresponding node, as well as a termination point on that node. Similar to

a node, a link can map onto one or more links (which are terminated by the corresponding underlay

termination points) in an underlay topology. This is captured in the list "supporting-link".

4.3. Extending the Data Model

In order to derive a data model for a specific type of network, the base data model can be extended.

This can be done roughly as follows: a new YANG module for the new network type is introduced. In

this module, a number of augmentations are defined against the "ietf‑network" and

"ietf‑network‑topology" modules.

Figure 5 The Structure of the Abstract (Base) Network Topology Data Model

module: ietf-network-topology
 augment /nw:networks/nw:network:
 +--rw link* [link-id]
 +--rw link-id link-id
 +--rw source
 | +--rw source-node? -> ../../../nw:node/node-id
 | +--rw source-tp? leafref
 +--rw destination
 | +--rw dest-node? -> ../../../nw:node/node-id
 | +--rw dest-tp? leafref
 +--rw supporting-link* [network-ref link-ref]
 +--rw network-ref
 | -> ../../../nw:supporting-network/network-ref
 +--rw link-ref leafref
 augment /nw:networks/nw:network/nw:node:
 +--rw termination-point* [tp-id]
 +--rw tp-id tp-id
 +--rw supporting-termination-point*
 [network-ref node-ref tp-ref]
 +--rw network-ref
 | -> ../../../nw:supporting-node/network-ref
 +--rw node-ref
 | -> ../../../nw:supporting-node/node-ref
 +--rw tp-ref leafref

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 13

We start with augmentations against the "ietf‑network" module. First, a new network type needs to be

defined; this is done by defining a presence container that represents the new network type. The new

network type is inserted, by means of augmentation, below the network‑types container. Subsequently,

data nodes for any node parameters that are specific to a network type are defined and augmented into

the node list. The new data nodes can be defined as conditional ("when") on the presence of the

corresponding network type in the containing network. In cases where there are any requirements or

restrictions in terms of network hierarchies, such as when a network of a new network type requires a

specific type of underlay network, it is possible to define corresponding constraints as well and

augment the supporting-network list accordingly. However, care should be taken to avoid excessive

definitions of constraints.

Subsequently, augmentations are defined against the "ietf‑network‑topology" module. Data nodes are

defined for link parameters, as well as termination point parameters, that are specific to the new

network type. Those data nodes are inserted via augmentation into the link and termination-point lists,

respectively. Again, data nodes can be defined as conditional on the presence of the corresponding

network type in the containing network, by adding a corresponding "when" statement.

It is possible, but not required, to group data nodes for a given network type under a dedicated

container. Doing so introduces additional structure but lengthens data node path names.

In cases where a hierarchy of network types is defined, augmentations can in turn be applied against

augmenting modules, with the module of a network whose type is more specific augmenting the

module of a network whose type is more general.

4.4. Discussion and Selected Design Decisions

4.4.1. Container Structure

Rather than maintaining lists in separate containers, the data model is kept relatively flat in terms of its

containment structure. Lists of nodes, links, termination points, and supporting nodes; supporting

links; and supporting termination points are not kept in separate containers. Therefore, path identifiers

that are used to refer to specific nodes -- in management operations or in specifications of constraints --

can remain relatively compact. Of course, this means that there is no separate structure in instance

information that separates elements of different lists from one another. Such a structure is semantically

not required, but it might provide enhanced "human readability" in some cases.

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 14

4.4.2. Underlay Hierarchies and Mappings

To minimize assumptions regarding what a particular entity might actually represent, mappings

between networks, nodes, links, and termination points are kept strictly generic. For example, no

assumptions are made regarding whether a termination point actually refers to an interface or whether

a node refers to a specific "system" or device; the data model at this generic level makes no provisions

for these.

Where additional specifics about mappings between upper and lower layers are required, the

information can be captured in augmenting modules. For example, to express that a termination point

in a particular network type maps to an interface, an augmenting module can introduce an

augmentation to the termination point. The augmentation introduces a leaf of type "interface‑ref". That

leaf references the corresponding interface

It is possible for links at one level of a hierarchy to map to multiple links at another level of the

hierarchy. For example, a VPN topology might model VPN tunnels as links. Where a VPN tunnel

maps to a path that is composed of a chain of several links, the link will contain a list of those

supporting links. Likewise, it is possible for a link at one level of a hierarchy to aggregate a bundle of

links at another level of the hierarchy.

4.4.3. Dealing with Changes in Underlay Networks

It is possible for a network to undergo churn even as other networks are layered on top of it. When a

supporting node, link, or termination point is deleted, the supporting leafrefs in the overlay will be left

dangling. To allow for this possibility, the data model makes use of the "require-instance" construct of

YANG 1.1

A dangling leafref of a configured object leaves the corresponding instance in a state in which it lacks

referential integrity, effectively rendering it nonoperational. Any corresponding object instance is

therefore removed from the operational state datastore until the situation has been resolved, i.e., until

either (1) the supporting object is added to the operational state datastore or (2) the instance is

reconfigured to refer to another object that is actually reflected in the operational state datastore. It will

remain part of the intended datastore.

It is the responsibility of the application maintaining the overlay to deal with the possibility of churn in

the underlay network. When a server receives a request to configure an overlay network, it SHOULD

validate whether supporting nodes / links / termination points refer to nodes in the underlay that

[RFC8343]. Similarly, if a node maps to a particular device

or network element, an augmenting module can augment the node data with a leaf that references the

network element.

[RFC7950].

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 15

actually exist, i.e., verify that the nodes are reflected in the operational state datastore. Configuration

requests in which supporting nodes / links / termination points refer to objects currently not in

existence SHOULD be rejected. It is the responsibility of the application to update the overlay when a

supporting node / link / termination point is deleted at a later point in time. For this purpose, an

application might subscribe to updates when changes to the underlay occur -- for example, using

mechanisms defined in

4.4.4. Use of Groupings

The data model makes use of groupings instead of simply defining data nodes "inline". This makes it

easier to include the corresponding data nodes in notifications, which then do not need to respecify

each data node that is to be included. The trade‑off is that it makes the specification of constraints more

complex, because constraints involving data nodes outside the grouping need to be specified in

conjunction with a "uses" statement where the grouping is applied. This also means that constraints

and XML Path Language (XPath) statements need to be specified in such a way that they navigate

"down" first and select entire sets of nodes, as opposed to being able to simply specify them against

individual data nodes.

4.4.5. Cardinality and Directionality of Links

The topology data model includes links that are point-to-point and unidirectional. It does not directly

support multipoint and bidirectional links. Although this may appear as a limitation, the decision to do

so keeps the data model simple and generic, and it allows it to be very easily subjected to applications

that make use of graph algorithms. Bidirectional connections can be represented through pairs of

unidirectional links. Multipoint networks can be represented through pseudonodes (similar to IS‑IS, for

example). By introducing hierarchies of nodes with nodes at one level mapping onto a set of other

nodes at another level and by introducing new links for nodes at that level, topologies with connections

representing non-point-to-point communication patterns can be represented.

4.4.6. Multihoming and Link Aggregation

Links are terminated by a single termination point, not sets of termination points. Connections

involving multihoming or link aggregation schemes need to be represented using multiple point-to-

point links and then defining a link at a higher layer that is supported by those individual links.

4.4.7. Mapping Redundancy

In a hierarchy of networks, there are nodes mapping to nodes, links mapping to links, and termination

points mapping to termination points. Some of this information is redundant. Specifically, if the

mapping of a link to one or more other links is known and the termination points of each link are

[YANG-Push].

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 16

known, the mapping information for the termination points can be derived via transitive closure and

does not have to be explicitly configured. Nonetheless, in order to not constrain applications regarding

which mappings they want to configure and which should be derived, the data model provides the

option to configure this information explicitly. The data model includes integrity constraints to allow

for validating for consistency.

4.4.8. Typing

A network's network types are represented using a container that contains a data node for each of its

network types. A network can encompass several types of networks simultaneously; hence, a container

is used instead of a case construct, with each network type in turn represented by a dedicated presence

container. The reason for not simply using an empty leaf, or (even more simply) even doing away with

the network container and just using a leaf‑list of "network‑type" instead, is to be able to represent

"class hierarchies" of network types, with one network type "refining" the other. Containers specific to

a network type are to be defined in the network-specific modules, augmenting the network-types

container.

4.4.9. Representing the Same Device in Multiple Networks

One common requirement concerns the ability to indicate that the same device can be part of multiple

networks and topologies. However, the data model defines a node as relative to the network that

contains it. The same node cannot be part of multiple topologies. In many cases, a node will be the

abstraction of a particular device in a network. To reflect that the same device is part of multiple

topologies, the following approach might be chosen: a new type of network to represent a "physical"

(or "device") network is introduced, with nodes representing devices. This network forms an underlay

network for logical networks above it, with nodes of the logical network mapping onto nodes in the

physical network.

This scenario is depicted in Figure 6. This figure depicts three networks with two nodes each. A

physical network ("P" in the figure) consists of an inventory of two nodes (D1 and D2), each

representing a device. A second network, X, has a third network, Y, as its underlay. Both X and Y also

have the physical network (P) as their underlay. X1 has both Y1 and D1 as underlay nodes, while Y1

has D1 as its underlay node. Likewise, X2 has both Y2 and D2 as underlay nodes, while Y2 has D2 as

its underlay node. The fact that X1 and Y1 are both instantiated on the same physical node (D1) can be

easily seen.

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 17

In the case of a physical network, nodes represent physical devices and termination points represent

physical ports. It should be noted that it is also possible to augment the data model for a physical

network type, defining augmentations that have nodes reference system information and termination

points reference physical interfaces, in order to provide a bridge between network and device models.

4.4.10. Supporting Client-Configured and System-Controlled Network Topologies

YANG requires data nodes to be designated as either configuration data ("config true") or operational

data ("config false"), but not both, yet it is important to have all network information, including

vertical cross-network dependencies, captured in one coherent data model. In most cases, network

topology information about a network is discovered; the topology is considered a property of the

network that is reflected in the data model. That said, certain types of topologies need to also be

configurable by an application, e.g., in the case of overlay topologies.

The YANG data model for network topologies designates all data as "config true". The distinction

between data that is actually configured and data that is in effect, including network data that is

discovered, is provided through the datastores introduced as part of the Network Management

Datastore Architecture (NMDA)

Figure 6 Topology Hierarchy Example - Multiple Underlays

 +---------------------+
 / [X1]____[X2] / X(Service Overlay)
 +----:--:----:--------+
 ..: :..: :
 : : : :....
 +-----:-------------:--+ : :...
 / [Y1]____[Y2]....: / :.. :
+------|-------|-------+ :.. :...
 Y(L3) | +---------------------:-----+ :
 | +----:----|-:----------+
 +------------------------/---[D1] [D2] /
 +----------------------+
 P (Physical Network)

[RFC8342]. Network topology data that is discovered is automatically

populated as part of the operational state datastore, i.e., <operational>. It is "system controlled".

Network topology that is configured is instantiated as part of a configuration datastore, e.g.,

<intended>. Only when it has actually taken effect will it also be instantiated as part of the operational

state datastore, i.e., <operational>.

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 18

In general, a configured network topology will refer to an underlay topology and include layering

information, such as the supporting node(s) underlying a node, supporting link(s) underlying a link,

and supporting termination point(s) underlying a termination point. The supporting objects must be

instantiated in the operational state datastore in order for the dependent overlay object to be reflected in

the operational state datastore. Should a configured data item (such as a node) have a dangling

reference that refers to a nonexistent data item (such as a supporting node), the configured data item

will automatically be removed from <operational> and show up only in <intended>. It will be up to the

client application to resolve the situation and ensure that the reference to the supporting resources is

configured properly.

For each network, the origin of its data is indicated per the "origin" metadata

4.4.11. Identifiers of String or URI Type

The current data model defines identifiers of nodes, networks, links, and termination points as URIs.

Alternatively, they could have been defined as strings.

The case for strings is that they will be easier to implement. The reason for choosing URIs is that the

topology / node / termination point exists in a larger context; hence, it is useful to be able to correlate

identifiers across systems. Although strings -- being the universal data type -- are easier for human

beings, they also muddle things. What typically happens is that strings have some structure that is

magically assigned, and the knowledge of this structure has to be communicated to each system

working with the data. A URI makes the structure explicit and also attaches additional semantics: the

URI, unlike a free-form string, can be fed into a URI resolver, which can point to additional resources

associated with the URI. This property is important when the topology data is integrated into a larger

and more complex system.

5. Interactions with Other YANG Modules

The data model makes use of data types that have been defined in

This is a protocol-independent YANG data model with topology information. It is separate from, and

not linked with, data models that are used to configure routing protocols or routing information. This

includes, for example, the "ietf-routing" YANG module

[RFC7952] annotation

defined in [RFC8342]. In general, the origin of discovered network data is "learned"; the origin of

configured network data is "intended".

[RFC6991].

[RFC8022].

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 19

The data model obeys the requirements for the ephemeral state as specified in [RFC8242]. For

ephemeral topology data that is system controlled, the process tasked with maintaining topology

information will load information from the routing process (such as OSPF) into the operational state

datastore without relying on a configuration datastore.

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 20

6. YANG Modules

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 21

6.1. Defining the Abstract Network: ietf-network

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 22

<CODE BEGINS> file "ietf-network@2018-02-26.yang"

module ietf-network {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-network";

 prefix nw;

 import ietf-inet-types {

 prefix inet;

 reference

 "RFC 6991: Common YANG Data Types";

 }

 organization

 "IETF I2RS (Interface to the Routing System) Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/i2rs/>

 WG List: <mailto:i2rs@ietf.org>

 Editor: Alexander Clemm

 <mailto:ludwig@clemm.org>

 Editor: Jan Medved

 <mailto:jmedved@cisco.com>

 Editor: Robert Varga

 <mailto:robert.varga@pantheon.tech>

 Editor: Nitin Bahadur

 <mailto:nitin_bahadur@yahoo.com>

 Editor: Hariharan Ananthakrishnan

 <mailto:hari@packetdesign.com>

 Editor: Xufeng Liu

 <mailto:xufeng.liu.ietf@gmail.com>";

 description

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 23

 "This module defines a common base data model for a collection

 of nodes in a network. Node definitions are further used

 in network topologies and inventories.

 Copyright (c) 2018 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Simplified BSD License

 set forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 8345;

 see the RFC itself for full legal notices.";

 revision 2018-02-26 {

 description

 "Initial revision.";

 reference

 "RFC 8345: A YANG Data Model for Network Topologies";

 }

 typedef node-id {

 type inet:uri;

 description

 "Identifier for a node. The precise structure of the node-id

 will be up to the implementation. For example, some

 implementations MAY pick a URI that includes the network-id

 as part of the path. The identifier SHOULD be chosen

 such that the same node in a real network topology will

 always be identified through the same identifier, even if

 the data model is instantiated in separate datastores. An

 implementation MAY choose to capture semantics in the

 identifier -- for example, to indicate the type of node.";

 }

 typedef network-id {

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 24

 type inet:uri;

 description

 "Identifier for a network. The precise structure of the

 network-id will be up to the implementation. The identifier

 SHOULD be chosen such that the same network will always be

 identified through the same identifier, even if the data model

 is instantiated in separate datastores. An implementation MAY

 choose to capture semantics in the identifier -- for example,

 to indicate the type of network.";

 }

 grouping network-ref {

 description

 "Contains the information necessary to reference a network --

 for example, an underlay network.";

 leaf network-ref {

 type leafref {

 path "/nw:networks/nw:network/nw:network-id";

 require-instance false;

 }

 description

 "Used to reference a network -- for example, an underlay

 network.";

 }

 }

 grouping node-ref {

 description

 "Contains the information necessary to reference a node.";

 leaf node-ref {

 type leafref {

 path "/nw:networks/nw:network[nw:network-id=current()/../"+

 "network-ref]/nw:node/nw:node-id";

 require-instance false;

 }

 description

 "Used to reference a node.

 Nodes are identified relative to the network that

 contains them.";

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 25

 }

 uses network-ref;

 }

 container networks {

 description

 "Serves as a top-level container for a list of networks.";

 list network {

 key "network-id";

 description

 "Describes a network.

 A network typically contains an inventory of nodes,

 topological information (augmented through the

 network-topology data model), and layering information.";

 leaf network-id {

 type network-id;

 description

 "Identifies a network.";

 }

 container network-types {

 description

 "Serves as an augmentation target.

 The network type is indicated through corresponding

 presence containers augmented into this container.";

 }

 list supporting-network {

 key "network-ref";

 description

 "An underlay network, used to represent layered network

 topologies.";

 leaf network-ref {

 type leafref {

 path "/nw:networks/nw:network/nw:network-id";

 require-instance false;

 }

 description

 "References the underlay network.";

 }

 }

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 26

 list node {

 key "node-id";

 description

 "The inventory of nodes of this network.";

 leaf node-id {

 type node-id;

 description

 "Uniquely identifies a node within the containing

 network.";

 }

 list supporting-node {

 key "network-ref node-ref";

 description

 "Represents another node that is in an underlay network

 and that supports this node. Used to represent layering

 structure.";

 leaf network-ref {

 type leafref {

 path "../../../nw:supporting-network/nw:network-ref";

 require-instance false;

 }

 description

 "References the underlay network of which the

 underlay node is a part.";

 }

 leaf node-ref {

 type leafref {

 path "/nw:networks/nw:network/nw:node/nw:node-id";

 require-instance false;

 }

 description

 "References the underlay node itself.";

 }

 }

 }

 }

 }

}

<CODE ENDS>

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 27

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 28

6.2. Creating Abstract Network Topology: ietf‑network‑topology

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 29

<CODE BEGINS> file "ietf-network-topology@2018-02-26.yang"

module ietf-network-topology {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-network-topology";

 prefix nt;

 import ietf-inet-types {

 prefix inet;

 reference

 "RFC 6991: Common YANG Data Types";

 }

 import ietf-network {

 prefix nw;

 reference

 "RFC 8345: A YANG Data Model for Network Topologies";

 }

 organization

 "IETF I2RS (Interface to the Routing System) Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/i2rs/>

 WG List: <mailto:i2rs@ietf.org>

 Editor: Alexander Clemm

 <mailto:ludwig@clemm.org>

 Editor: Jan Medved

 <mailto:jmedved@cisco.com>

 Editor: Robert Varga

 <mailto:robert.varga@pantheon.tech>

 Editor: Nitin Bahadur

 <mailto:nitin_bahadur@yahoo.com>

 Editor: Hariharan Ananthakrishnan

 <mailto:hari@packetdesign.com>

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 30

 Editor: Xufeng Liu

 <mailto:xufeng.liu.ietf@gmail.com>";

 description

 "This module defines a common base model for a network topology,

 augmenting the base network data model with links to connect

 nodes, as well as termination points to terminate links

 on nodes.

 Copyright (c) 2018 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Simplified BSD License

 set forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 8345;

 see the RFC itself for full legal notices.";

 revision 2018-02-26 {

 description

 "Initial revision.";

 reference

 "RFC 8345: A YANG Data Model for Network Topologies";

 }

 typedef link-id {

 type inet:uri;

 description

 "An identifier for a link in a topology. The precise

 structure of the link-id will be up to the implementation.

 The identifier SHOULD be chosen such that the same link in a

 real network topology will always be identified through the

 same identifier, even if the data model is instantiated in

 separate datastores. An implementation MAY choose to capture

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 31

 semantics in the identifier -- for example, to indicate the

 type of link and/or the type of topology of which the link is

 a part.";

 }

 typedef tp-id {

 type inet:uri;

 description

 "An identifier for termination points on a node. The precise

 structure of the tp-id will be up to the implementation.

 The identifier SHOULD be chosen such that the same termination

 point in a real network topology will always be identified

 through the same identifier, even if the data model is

 instantiated in separate datastores. An implementation MAY

 choose to capture semantics in the identifier -- for example,

 to indicate the type of termination point and/or the type of

 node that contains the termination point.";

 }

 grouping link-ref {

 description

 "This grouping can be used to reference a link in a specific

 network. Although it is not used in this module, it is

 defined here for the convenience of augmenting modules.";

 leaf link-ref {

 type leafref {

 path "/nw:networks/nw:network[nw:network-id=current()/../"+

 "network-ref]/nt:link/nt:link-id";

 require-instance false;

 }

 description

 "A type for an absolute reference to a link instance.

 (This type should not be used for relative references.

 In such a case, a relative path should be used instead.)";

 }

 uses nw:network-ref;

 }

 grouping tp-ref {

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 32

 description

 "This grouping can be used to reference a termination point

 in a specific node. Although it is not used in this module,

 it is defined here for the convenience of augmenting

 modules.";

 leaf tp-ref {

 type leafref {

 path "/nw:networks/nw:network[nw:network-id=current()/../"+

 "network-ref]/nw:node[nw:node-id=current()/../"+

 "node-ref]/nt:termination-point/nt:tp-id";

 require-instance false;

 }

 description

 "A type for an absolute reference to a termination point.

 (This type should not be used for relative references.

 In such a case, a relative path should be used instead.)";

 }

 uses nw:node-ref;

 }

 augment "/nw:networks/nw:network" {

 description

 "Add links to the network data model.";

 list link {

 key "link-id";

 description

 "A network link connects a local (source) node and

 a remote (destination) node via a set of the respective

 node's termination points. It is possible to have several

 links between the same source and destination nodes.

 Likewise, a link could potentially be re-homed between

 termination points. Therefore, in order to ensure that we

 would always know to distinguish between links, every link

 is identified by a dedicated link identifier. Note that a

 link models a point-to-point link, not a multipoint link.";

 leaf link-id {

 type link-id;

 description

 "The identifier of a link in the topology.

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 33

 A link is specific to a topology to which it belongs.";

 }

 container source {

 description

 "This container holds the logical source of a particular

 link.";

 leaf source-node {

 type leafref {

 path "../../../nw:node/nw:node-id";

 require-instance false;

 }

 description

 "Source node identifier. Must be in the same topology.";

 }

 leaf source-tp {

 type leafref {

 path "../../../nw:node[nw:node-id=current()/../"+

 "source-node]/termination-point/tp-id";

 require-instance false;

 }

 description

 "This termination point is located within the source node

 and terminates the link.";

 }

 }

 container destination {

 description

 "This container holds the logical destination of a

 particular link.";

 leaf dest-node {

 type leafref {

 path "../../../nw:node/nw:node-id";

 require-instance false;

 }

 description

 "Destination node identifier. Must be in the same

 network.";

 }

 leaf dest-tp {

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 34

 type leafref {

 path "../../../nw:node[nw:node-id=current()/../"+

 "dest-node]/termination-point/tp-id";

 require-instance false;

 }

 description

 "This termination point is located within the

 destination node and terminates the link.";

 }

 }

 list supporting-link {

 key "network-ref link-ref";

 description

 "Identifies the link or links on which this link depends.";

 leaf network-ref {

 type leafref {

 path "../../../nw:supporting-network/nw:network-ref";

 require-instance false;

 }

 description

 "This leaf identifies in which underlay topology

 the supporting link is present.";

 }

 leaf link-ref {

 type leafref {

 path "/nw:networks/nw:network[nw:network-id=current()/"+

 "../network-ref]/link/link-id";

 require-instance false;

 }

 description

 "This leaf identifies a link that is a part

 of this link's underlay. Reference loops in which

 a link identifies itself as its underlay, either

 directly or transitively, are not allowed.";

 }

 }

 }

 }

 augment "/nw:networks/nw:network/nw:node" {

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 35

 description

 "Augments termination points that terminate links.

 Termination points can ultimately be mapped to interfaces.";

 list termination-point {

 key "tp-id";

 description

 "A termination point can terminate a link.

 Depending on the type of topology, a termination point

 could, for example, refer to a port or an interface.";

 leaf tp-id {

 type tp-id;

 description

 "Termination point identifier.";

 }

 list supporting-termination-point {

 key "network-ref node-ref tp-ref";

 description

 "This list identifies any termination points on which a

 given termination point depends or onto which it maps.

 Those termination points will themselves be contained

 in a supporting node. This dependency information can be

 inferred from the dependencies between links. Therefore,

 this item is not separately configurable. Hence, no

 corresponding constraint needs to be articulated.

 The corresponding information is simply provided by the

 implementing system.";

 leaf network-ref {

 type leafref {

 path "../../../nw:supporting-node/nw:network-ref";

 require-instance false;

 }

 description

 "This leaf identifies in which topology the

 supporting termination point is present.";

 }

 leaf node-ref {

 type leafref {

 path "../../../nw:supporting-node/nw:node-ref";

 require-instance false;

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 36

7. IANA Considerations

This document registers the following namespace URIs in the "IETF XML Registry"

 }

 description

 "This leaf identifies in which node the supporting

 termination point is present.";

 }

 leaf tp-ref {

 type leafref {

 path "/nw:networks/nw:network[nw:network-id=current()/"+

 "../network-ref]/nw:node[nw:node-id=current()/../"+

 "node-ref]/termination-point/tp-id";

 require-instance false;

 }

 description

 "Reference to the underlay node (the underlay node must

 be in a different topology).";

 }

 }

 }

 }

}

<CODE ENDS>

[RFC3688]:

URI: urn:ietf:params:xml:ns:yang:ietf-network
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf-network-topology
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf-network-state
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf-network-topology-state
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 37

This document registers the following YANG modules in the "YANG Module Names" registry

8. Security Considerations

The YANG modules specified in this document define a schema for data that is designed to be

accessed via network management protocols such as NETCONF

The NETCONF access control model

The network topology and inventory created by these modules reveal information about the structure

of networks that could be very helpful to an attacker. As a privacy consideration, although there is no

personally identifiable information defined in these modules, it is possible that some node identifiers

may be associated with devices that are in turn associated with specific users.

[RFC6020]:

Name: ietf-network
Namespace: urn:ietf:params:xml:ns:yang:ietf-network
Prefix: nw
Reference: RFC 8345

Name: ietf-network-topology
Namespace: urn:ietf:params:xml:ns:yang:ietf-network-topology
Prefix: nt
Reference: RFC 8345

Name: ietf-network-state
Namespace: urn:ietf:params:xml:ns:yang:ietf-network-state
Prefix: nw-s
Reference: RFC 8345

Name: ietf-network-topology-state
Namespace: urn:ietf:params:xml:ns:yang:ietf-network-topology-state
Prefix: nt-s
Reference: RFC 8345

[RFC6241] or RESTCONF

[RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-

implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is

HTTPS, and the mandatory-to-implement secure transport is TLS [RFC5246].

[RFC8341] provides the means to restrict access for particular

NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF

protocol operations and content.

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 38

The YANG modules define information that can be configurable in certain instances -- for example, in

the case of overlay topologies that can be created by client applications. In such cases, a malicious

client could introduce topologies that are undesired. Specifically, a malicious client could attempt to

remove or add a node, a link, or a termination point by creating or deleting corresponding elements in

node, link, or termination point lists, respectively. In the case of a topology that is learned, the server

will automatically prohibit such misconfiguration attempts. In the case of a topology that is configured,

i.e., whose origin is "intended", the undesired configuration could become effective and be reflected in

the operational state datastore, leading to disruption of services provided via this topology. For

example, the topology could be "cut" or could be configured in a suboptimal way, leading to increased

consumption of resources in the underlay network due to the routing and bandwidth utilization

inefficiencies that would result. Likewise, it could lead to degradation of service levels as well as

possible disruption of service. For those reasons, it is important that the NETCONF access control

model be vigorously applied to prevent topology misconfiguration by unauthorized clients.

There are a number of data nodes defined in these YANG modules that are writable/creatable/deletable

(i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in

some network environments. Write operations (e.g., edit-config) to these data nodes without proper

protection can have a negative effect on network operations. These are the subtrees and data nodes and

their sensitivity/vulnerability:

In the "ietf-network" module:

• network: A malicious client could attempt to remove or add a network in an effort to remove an

overlay topology or to create an unauthorized overlay.

• supporting network: A malicious client could attempt to disrupt the logical structure of the model,

resulting in a lack of overall data integrity and making it more difficult to, for example,

troubleshoot problems rooted in the layering of network topologies.

• node: A malicious client could attempt to remove or add a node from the network -- for example,

in order to sabotage the topology of a network overlay.

• supporting node: A malicious client could attempt to change the supporting node in order to

sabotage the layering of an overlay.

In the "ietf-network-topology" module:

• link: A malicious client could attempt to remove a link from a topology, add a new link,

manipulate the way the link is layered over supporting links, or modify the source or destination

of the link. In each case, the structure of the topology would be sabotaged, and this scenario

could, for example, result in an overlay topology that is less than optimal.

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 39

[RFC2119]

[RFC3688]

[RFC5246]

[RFC6020]

[RFC6241]

[RFC6242]

[RFC6991]

[RFC7950]

[RFC8040]

• termination point: A malicious client could attempt to remove termination points from a node, add

"phantom" termination points to a node, or change the layering dependencies of termination

points, again in an effort to sabotage the integrity of a topology and potentially disrupt orderly

operations of an overlay.

References

Normative References

, , ,

, , March 1997

.

, , , ,

, January 2004 .

,

, , , August 2008

.

,

, , ,

October 2010 .

,

, ,

, June 2011 .

, ,

, , June 2011

.

, , ,

, July 2013 .

, , ,

, August 2016 .

, , ,

, January 2017 .

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP14

RFC2119 DOI10.17487/RFC2119 , <https://www.rfc-editor.org/info/

rfc2119>

Mealling, M. "The IETF XML Registry" BCP81 RFC3688 DOI10.17487/

RFC3688 , <https://www.rfc-editor.org/info/rfc3688>

Dierks, T. and E. Rescorla "The Transport Layer Security (TLS) Protocol Version

1.2" RFC5246 DOI10.17487/RFC5246 , <https://www.rfc-

editor.org/info/rfc5246>

Bjorklund, M., Ed. "YANG - A Data Modeling Language for the Network

Configuration Protocol (NETCONF)" RFC6020 DOI10.17487/RFC6020

, <https://www.rfc-editor.org/info/rfc6020>

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed.

"Network Configuration Protocol (NETCONF)" RFC6241 DOI10.17487/

RFC6241 , <https://www.rfc-editor.org/info/rfc6241>

Wasserman, M. "Using the NETCONF Protocol over Secure Shell (SSH)"

RFC6242 DOI10.17487/RFC6242 , <https://www.rfc-editor.org/info/

rfc6242>

Schoenwaelder, J., Ed. "Common YANG Data Types" RFC6991 DOI10.17487/

RFC6991 , <https://www.rfc-editor.org/info/rfc6991>

Bjorklund, M., Ed. "The YANG 1.1 Data Modeling Language" RFC7950

DOI10.17487/RFC7950 , <https://www.rfc-editor.org/info/rfc7950>

Bierman, A., Bjorklund, M., and K. Watsen "RESTCONF Protocol" RFC8040

DOI10.17487/RFC8040 , <https://www.rfc-editor.org/info/rfc8040>

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 40

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6242
https://www.rfc-editor.org/info/rfc6242
https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8040

[RFC8174]

[RFC8341]

[RFC8342]

[RFC1195]

[RFC2328]

[RFC3209]

[RFC3444]

[RFC7951]

[RFC7952]

[RFC8022]

[RFC8242]

, ,

, , , May 2017

.

, ,

, , , March 2018

.

,

, ,

, March 2018 .

Informative References

, ,

, , December 1990

.

, , , , , April

1998 .

,

, , ,

December 2001 .

,

, , , January 2003

.

, , ,

, August 2016 .

, , ,

, August 2016 .

, ,

, , November 2016

.

,

, , , September 2017

.

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"

BCP14 RFC8174 DOI10.17487/RFC8174 , <https://www.rfc-

editor.org/info/rfc8174>

Bierman, A. and M. Bjorklund "Network Configuration Access Control Model"

STD91 RFC8341 DOI10.17487/RFC8341 , <https://www.rfc-

editor.org/info/rfc8341>

Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., and R. Wilton "Network

Management Datastore Architecture (NMDA)" RFC8342 DOI10.17487/

RFC8342 , <https://www.rfc-editor.org/info/rfc8342>

Callon, R.W. "Use of OSI IS-IS for routing in TCP/IP and dual environments"

RFC1195 DOI10.17487/RFC1195 , <https://www.rfc-editor.org/

info/rfc1195>

Moy, J. "OSPF Version 2" STD54 RFC2328 DOI10.17487/RFC2328

, <https://www.rfc-editor.org/info/rfc2328>

Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., and G. Swallow "RSVP-

TE: Extensions to RSVP for LSP Tunnels" RFC3209 DOI10.17487/RFC3209

, <https://www.rfc-editor.org/info/rfc3209>

Pras, A. and J. Schoenwaelder "On the Difference between Information Models

and Data Models" RFC3444 DOI10.17487/RFC3444 , <https://

www.rfc-editor.org/info/rfc3444>

Lhotka, L. "JSON Encoding of Data Modeled with YANG" RFC7951

DOI10.17487/RFC7951 , <https://www.rfc-editor.org/info/rfc7951>

Lhotka, L. "Defining and Using Metadata with YANG" RFC7952 DOI10.17487/

RFC7952 , <https://www.rfc-editor.org/info/rfc7952>

Lhotka, L. and A. Lindem "A YANG Data Model for Routing Management"

RFC8022 DOI10.17487/RFC8022 , <https://www.rfc-editor.org/

info/rfc8022>

Haas, J. and S. Hares "Interface to the Routing System (I2RS) Ephemeral State

Requirements" RFC8242 DOI10.17487/RFC8242 , <https://

www.rfc-editor.org/info/rfc8242>

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 41

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc1195
https://www.rfc-editor.org/info/rfc1195
https://www.rfc-editor.org/info/rfc2328
https://www.rfc-editor.org/info/rfc3209
https://www.rfc-editor.org/info/rfc3444
https://www.rfc-editor.org/info/rfc3444
https://www.rfc-editor.org/info/rfc7951
https://www.rfc-editor.org/info/rfc7952
https://www.rfc-editor.org/info/rfc8022
https://www.rfc-editor.org/info/rfc8022
https://www.rfc-editor.org/info/rfc8242
https://www.rfc-editor.org/info/rfc8242

[RFC8340]

[RFC8343]

[RFC8346]

[USECASE-REQS]

[YANG-Push]

, , , ,

, March 2018 .

, , ,

, March 2018 .

,

, ,

, March 2018 .

, ,

, November 2016.

, ,

, February 2018.

Appendix A. Model Use Cases

A.1. Fetching Topology from a Network Element

In its simplest form, topology is learned by a network element (e.g., a router) through its participation

in peering protocols (IS-IS, BGP, etc.). This learned topology can then be exported (e.g., to a Network

Management System) for external utilization. Typically, any network element in a domain can be

queried for its topology and be expected to return the same result.

In a slightly more complex form, the network element may be a controller. It could be a network

element with satellite or subtended devices hanging off of it, or it could be a controller in the more

classical sense -- that is, a special device designated to orchestrate the activities of a number of other

devices (e.g., an Optical Controller). In this case, the controller device is logically a singleton and must

be queried distinctly.

It is worth noting that controllers can be built on top of other controllers to establish a topology

incorporating all of the domains within an entire network.

In all of the cases above, the topology learned by the network element is considered to be operational

state data. That is, the data is accumulated purely by the network element's interactions with other

systems and is subject to change dynamically without input or consent.

Bjorklund, M. and L. Berger, Ed. "YANG Tree Diagrams" BCP215 RFC8340

DOI10.17487/RFC8340 , <https://www.rfc-editor.org/info/rfc8340>

Bjorklund, M. "A YANG Data Model for Interface Management" RFC8343

DOI10.17487/RFC8343 , <https://www.rfc-editor.org/info/rfc8343>

Clemm, A., Medved, J., Varga, R., Liu, X., Ananthakrishnan, H., and N. Bahadur

"A YANG Data Model for Layer 3 Topologies" RFC8346 DOI10.17487/

RFC8346 , <https://www.rfc-editor.org/info/rfc8346>

Hares, S. and M. Chen "Summary of I2RS Use Case Requirements" Work in

Progress,draft-ietf-i2rs-usecase-reqs-summary-03

Clemm, A., Voit, E., Gonzalez Prieto, A., Tripathy, A., Nilsen-Nygaard, E.,

Bierman, A., and B. Lengyel "YANG Datastore Subscription" Work in

Progress,draft-ietf-netconf-yang-push-15

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 42

https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8343
https://www.rfc-editor.org/info/rfc8346

A.2. Modifying TE Topology Imported from an Optical
Controller

Consider a scenario where an Optical Controller presents its topology, in abstract TE terms, to a client

packet controller. This customized topology (which gets merged into the client's native topology)

contains sufficient information for the path-computing client to select paths across the optical domain

according to its policies. If the client determines (at any given point in time) that this imported

topology does not cater exactly to its requirements, it may decide to request modifications to the

topology. Such customization requests may include the addition or deletion of topological elements or

the modification of attributes associated with existing topological elements. From the perspective of

the Optical Controller, these requests translate into configuration changes to the exported abstract

topology.

A.3. Annotating Topology for Local Computation

In certain scenarios, the topology learned by a controller needs to be augmented with additional

attributes before running a computation algorithm on it. Consider the case where a path-computation

application on the controller needs to take the geographic coordinates of the nodes into account while

computing paths on the learned topology. If the learned topology does not contain these coordinates,

then these additional attributes must be configured on the corresponding topological elements.

A.4. SDN Controller-Based Configuration of Overlays on
Top of Underlays

In this scenario, an SDN Controller (for example, Open Daylight) maintains a view of the topology of

the network that it controls based on information that it discovers from the network. In addition, it

provides an application in which it configures and maintains an overlay topology.

The SDN Controller thus maintains two roles:

• It is a client to the network.

• It is a server to its own northbound applications and clients, e.g., an Operations Support System

(OSS).

In other words, one system's client (or controller, in this case) may be another system's server (or

managed system).

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 43

In this scenario, the SDN Controller maintains a consolidated data model of multiple layers of

topology. This includes the lower layers of the network topology, built from information that is

discovered from the network. It also includes upper layers of topology overlay, configurable by the

controller's client, i.e., the OSS. To the OSS, the lower topology layers constitute "read-only"

information. The upper topology layers need to be read-writable.

Appendix B. Companion YANG Data Models for
Implementations Not Compliant with NMDA

The YANG modules defined in this document are designed to be used in conjunction with

implementations that support the Network Management Datastore Architecture (NMDA) as defined in

6.1 and 6.2 of this document); however, in the case of these modules, all

data nodes are non‑configurable. They represent state that comes into being by either (1) learning

topology information from the network or (2) applying configuration from the mirrored modules.

The "ietf-network-state" and "ietf-network-topology-state" companion modules are redundant and

SHOULD NOT be supported by implementations that support NMDA; therefore, we define these

modules in Appendices B.1 and B.2 (below) instead of the main body of this document.

As the structure of both modules mirrors that of their underlying modules, the YANG tree is not

depicted separately.

[RFC8342]. In order to allow implementations to use the data model even in cases when NMDA is not

supported, the following two companion modules -- "ietf‑network‑state" and

"ietf‑network‑topology‑state" -- are defined; they represent the operational state of networks and

network topologies, respectively. These modules mirror the "ietf‑network" and "ietf‑network‑topology"

modules (defined in Sections

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 44

B.1. YANG Module for Network State

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 45

<CODE BEGINS> file "ietf-network-state@2018-02-26.yang"

module ietf-network-state {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-network-state";

 prefix nw-s;

 import ietf-network {

 prefix nw;

 reference

 "RFC 8345: A YANG Data Model for Network Topologies";

 }

 organization

 "IETF I2RS (Interface to the Routing System) Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/i2rs/>

 WG List: <mailto:i2rs@ietf.org>

 Editor: Alexander Clemm

 <mailto:ludwig@clemm.org>

 Editor: Jan Medved

 <mailto:jmedved@cisco.com>

 Editor: Robert Varga

 <mailto:robert.varga@pantheon.tech>

 Editor: Nitin Bahadur

 <mailto:nitin_bahadur@yahoo.com>

 Editor: Hariharan Ananthakrishnan

 <mailto:hari@packetdesign.com>

 Editor: Xufeng Liu

 <mailto:xufeng.liu.ietf@gmail.com>";

 description

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 46

 "This module defines a common base data model for a collection

 of nodes in a network. Node definitions are further used

 in network topologies and inventories. It represents

 information that either (1) is learned and automatically

 populated or (2) results from applying network information

 that has been configured per the 'ietf-network' data model,

 mirroring the corresponding data nodes in this data model.

 The data model mirrors 'ietf-network' but contains only

 read-only state data. The data model is not needed when the

 underlying implementation infrastructure supports the Network

 Management Datastore Architecture (NMDA).

 Copyright (c) 2018 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Simplified BSD License

 set forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 8345;

 see the RFC itself for full legal notices.";

 revision 2018-02-26 {

 description

 "Initial revision.";

 reference

 "RFC 8345: A YANG Data Model for Network Topologies";

 }

 grouping network-ref {

 description

 "Contains the information necessary to reference a network --

 for example, an underlay network.";

 leaf network-ref {

 type leafref {

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 47

 path "/nw-s:networks/nw-s:network/nw-s:network-id";

 require-instance false;

 }

 description

 "Used to reference a network -- for example, an underlay

 network.";

 }

 }

 grouping node-ref {

 description

 "Contains the information necessary to reference a node.";

 leaf node-ref {

 type leafref {

 path "/nw-s:networks/nw-s:network[nw-s:network-id=current()"+

 "/../network-ref]/nw-s:node/nw-s:node-id";

 require-instance false;

 }

 description

 "Used to reference a node.

 Nodes are identified relative to the network that

 contains them.";

 }

 uses network-ref;

 }

 container networks {

 config false;

 description

 "Serves as a top-level container for a list of networks.";

 list network {

 key "network-id";

 description

 "Describes a network.

 A network typically contains an inventory of nodes,

 topological information (augmented through the

 network-topology data model), and layering information.";

 container network-types {

 description

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 48

 "Serves as an augmentation target.

 The network type is indicated through corresponding

 presence containers augmented into this container.";

 }

 leaf network-id {

 type nw:network-id;

 description

 "Identifies a network.";

 }

 list supporting-network {

 key "network-ref";

 description

 "An underlay network, used to represent layered network

 topologies.";

 leaf network-ref {

 type leafref {

 path "/nw-s:networks/nw-s:network/nw-s:network-id";

 require-instance false;

 }

 description

 "References the underlay network.";

 }

 }

 list node {

 key "node-id";

 description

 "The inventory of nodes of this network.";

 leaf node-id {

 type nw:node-id;

 description

 "Uniquely identifies a node within the containing

 network.";

 }

 list supporting-node {

 key "network-ref node-ref";

 description

 "Represents another node that is in an underlay network

 and that supports this node. Used to represent layering

 structure.";

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 49

 leaf network-ref {

 type leafref {

 path "../../../nw-s:supporting-network/nw-s:network-

ref";

 require-instance false;

 }

 description

 "References the underlay network of which the

 underlay node is a part.";

 }

 leaf node-ref {

 type leafref {

 path "/nw-s:networks/nw-s:network/nw-s:node/nw-s:node-

id";

 require-instance false;

 }

 description

 "References the underlay node itself.";

 }

 }

 }

 }

 }

}

<CODE ENDS>

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 50

B.2. YANG Module for Network Topology State

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 51

<CODE BEGINS> file "ietf-network-topology-state@2018-02-26.yang"

module ietf-network-topology-state {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-network-topology-

state";

 prefix nt-s;

 import ietf-network-state {

 prefix nw-s;

 reference

 "RFC 8345: A YANG Data Model for Network Topologies";

 }

 import ietf-network-topology {

 prefix nt;

 reference

 "RFC 8345: A YANG Data Model for Network Topologies";

 }

 organization

 "IETF I2RS (Interface to the Routing System) Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/i2rs/>

 WG List: <mailto:i2rs@ietf.org>

 Editor: Alexander Clemm

 <mailto:ludwig@clemm.org>

 Editor: Jan Medved

 <mailto:jmedved@cisco.com>

 Editor: Robert Varga

 <mailto:robert.varga@pantheon.tech>

 Editor: Nitin Bahadur

 <mailto:nitin_bahadur@yahoo.com>

 Editor: Hariharan Ananthakrishnan

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 52

 <mailto:hari@packetdesign.com>

 Editor: Xufeng Liu

 <mailto:xufeng.liu.ietf@gmail.com>";

 description

 "This module defines a common base data model for network

 topology state, representing topology that either (1) is learned

 or (2) results from applying topology that has been configured

 per the 'ietf-network-topology' data model, mirroring the

 corresponding data nodes in this data model. It augments the

 base network state data model with links to connect nodes, as

 well as termination points to terminate links on nodes.

 The data model mirrors 'ietf-network-topology' but contains only

 read-only state data. The data model is not needed when the

 underlying implementation infrastructure supports the Network

 Management Datastore Architecture (NMDA).

 Copyright (c) 2018 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Simplified BSD License

 set forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 8345;

 see the RFC itself for full legal notices.";

 revision 2018-02-26 {

 description

 "Initial revision.";

 reference

 "RFC 8345: A YANG Data Model for Network Topologies";

 }

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 53

 grouping link-ref {

 description

 "References a link in a specific network. Although this

 grouping is not used in this module, it is defined here for

 the convenience of augmenting modules.";

 leaf link-ref {

 type leafref {

 path "/nw-s:networks/nw-s:network[nw-s:network-id=current()"+

 "/../network-ref]/nt-s:link/nt-s:link-id";

 require-instance false;

 }

 description

 "A type for an absolute reference to a link instance.

 (This type should not be used for relative references.

 In such a case, a relative path should be used instead.)";

 }

 uses nw-s:network-ref;

 }

 grouping tp-ref {

 description

 "References a termination point in a specific node. Although

 this grouping is not used in this module, it is defined here

 for the convenience of augmenting modules.";

 leaf tp-ref {

 type leafref {

 path "/nw-s:networks/nw-s:network[nw-s:network-id=current()"+

 "/../network-ref]/nw-s:node[nw-s:node-id=current()/../"+

 "node-ref]/nt-s:termination-point/nt-s:tp-id";

 require-instance false;

 }

 description

 "A type for an absolute reference to a termination point.

 (This type should not be used for relative references.

 In such a case, a relative path should be used instead.)";

 }

 uses nw-s:node-ref;

 }

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 54

 augment "/nw-s:networks/nw-s:network" {

 description

 "Add links to the network data model.";

 list link {

 key "link-id";

 description

 "A network link connects a local (source) node and

 a remote (destination) node via a set of the respective

 node's termination points. It is possible to have several

 links between the same source and destination nodes.

 Likewise, a link could potentially be re-homed between

 termination points. Therefore, in order to ensure that we

 would always know to distinguish between links, every link

 is identified by a dedicated link identifier. Note that a

 link models a point-to-point link, not a multipoint link.";

 container source {

 description

 "This container holds the logical source of a particular

 link.";

 leaf source-node {

 type leafref {

 path "../../../nw-s:node/nw-s:node-id";

 require-instance false;

 }

 description

 "Source node identifier. Must be in the same topology.";

 }

 leaf source-tp {

 type leafref {

 path "../../../nw-s:node[nw-s:node-id=current()/../"+

 "source-node]/termination-point/tp-id";

 require-instance false;

 }

 description

 "This termination point is located within the source node

 and terminates the link.";

 }

 }

 container destination {

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 55

 description

 "This container holds the logical destination of a

 particular link.";

 leaf dest-node {

 type leafref {

 path "../../../nw-s:node/nw-s:node-id";

 require-instance false;

 }

 description

 "Destination node identifier. Must be in the same

 network.";

 }

 leaf dest-tp {

 type leafref {

 path "../../../nw-s:node[nw-s:node-id=current()/../"+

 "dest-node]/termination-point/tp-id";

 require-instance false;

 }

 description

 "This termination point is located within the

 destination node and terminates the link.";

 }

 }

 leaf link-id {

 type nt:link-id;

 description

 "The identifier of a link in the topology.

 A link is specific to a topology to which it belongs.";

 }

 list supporting-link {

 key "network-ref link-ref";

 description

 "Identifies the link or links on which this link depends.";

 leaf network-ref {

 type leafref {

 path "../../../nw-s:supporting-network/nw-s:network-ref";

 require-instance false;

 }

 description

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 56

 "This leaf identifies in which underlay topology

 the supporting link is present.";

 }

 leaf link-ref {

 type leafref {

 path "/nw-s:networks/nw-s:network[nw-s:network-id="+

 "current()/../network-ref]/link/link-id";

 require-instance false;

 }

 description

 "This leaf identifies a link that is a part

 of this link's underlay. Reference loops in which

 a link identifies itself as its underlay, either

 directly or transitively, are not allowed.";

 }

 }

 }

 }

 augment "/nw-s:networks/nw-s:network/nw-s:node" {

 description

 "Augments termination points that terminate links.

 Termination points can ultimately be mapped to interfaces.";

 list termination-point {

 key "tp-id";

 description

 "A termination point can terminate a link.

 Depending on the type of topology, a termination point

 could, for example, refer to a port or an interface.";

 leaf tp-id {

 type nt:tp-id;

 description

 "Termination point identifier.";

 }

 list supporting-termination-point {

 key "network-ref node-ref tp-ref";

 description

 "This list identifies any termination points on which a

 given termination point depends or onto which it maps.

 Those termination points will themselves be contained

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 57

 in a supporting node. This dependency information can be

 inferred from the dependencies between links. Therefore,

 this item is not separately configurable. Hence, no

 corresponding constraint needs to be articulated.

 The corresponding information is simply provided by the

 implementing system.";

 leaf network-ref {

 type leafref {

 path "../../../nw-s:supporting-node/nw-s:network-ref";

 require-instance false;

 }

 description

 "This leaf identifies in which topology the

 supporting termination point is present.";

 }

 leaf node-ref {

 type leafref {

 path "../../../nw-s:supporting-node/nw-s:node-ref";

 require-instance false;

 }

 description

 "This leaf identifies in which node the supporting

 termination point is present.";

 }

 leaf tp-ref {

 type leafref {

 path "/nw-s:networks/nw-s:network[nw-s:network-id="+

 "current()/../network-ref]/nw-s:node[nw-s:node-id="+

 "current()/../node-ref]/termination-point/tp-id";

 require-instance false;

 }

 description

 "Reference to the underlay node (the underlay node must

 be in a different topology).";

 }

 }

 }

 }

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 58

Appendix C. An Example

This section contains an example of an instance data tree in JSON encoding

Figure 7. There are three nodes: D1, D2, and D3. D1 has three termination

points (1-0-1, 1-2-1, and 1-3-1). D2 has three termination points as well (2-1-1, 2-0-1, and 2-3-1). D3

has two termination points (3-1-1 and 3-2-1). In addition, there are six links, two between each pair of

nodes with one going in each direction.

The corresponding instance data tree is depicted in Figure 8:

}

<CODE ENDS>

[RFC7951]. The example

instantiates "ietf-network-topology" (and "ietf-network", which "ietf-network-topology" augments) for

the topology depicted in

Figure 7 A Network Topology Example

 +------------+ +------------+
 | D1 | | D2 |
 /-\ /-\ /-\ /-\
 | | 1-0-1 | |---------------->| | 2-1-1 | |
 | | 1-2-1 | |<----------------| | 2-0-1 | |
 \-/ 1-3-1 \-/ \-/ 2-3-1 \-/
 | /----\ | | /----\ |
 +---| |---+ +---| |---+
 \----/ \----/
 A | A |
 | | | | | |
 | | | |
 | | +------------+ | |
 | | | D3 | | |
 | | /-\ /-\ | |
 | +----->| | 3-1-1 | |-------+ |
 +---------| | 3-2-1 | |<---------+
 \-/ \-/
 | |
 +------------+

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 59

{
 "ietf-network:networks": {
 "network": [
 {
 "network-types": {
 },
 "network-id": "otn-hc",
 "node": [
 {
 "node-id": "D1",
 "termination-point": [
 {
 "tp-id": "1-0-1"
 },
 {
 "tp-id": "1-2-1"
 },
 {
 "tp-id": "1-3-1"
 }
]
 },
 {
 "node-id": "D2",
 "termination-point": [
 {
 "tp-id": "2-0-1"
 },
 {
 "tp-id": "2-1-1"
 },
 {
 "tp-id": "2-3-1"
 }
]
 },
 {
 "node-id": "D3",
 "termination-point": [
 {
 "tp-id": "3-1-1"
 },
 {
 "tp-id": "3-2-1"
 }
]
 }
],
 "ietf-network-topology:link": [
 {
 "link-id": "D1,1-2-1,D2,2-1-1",
 "source": {
 "source-node": "D1",
 "source-tp": "1-2-1"

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 60

 }
 "destination": {
 "dest-node": "D2",
 "dest-tp": "2-1-1"
 }
 },
 {
 "link-id": "D2,2-1-1,D1,1-2-1",
 "source": {
 "source-node": "D2",
 "source-tp": "2-1-1"
 }
 "destination": {
 "dest-node": "D1",
 "dest-tp": "1-2-1"
 }
 },
 {
 "link-id": "D1,1-3-1,D3,3-1-1",
 "source": {
 "source-node": "D1",
 "source-tp": "1-3-1"
 }
 "destination": {
 "dest-node": "D3",
 "dest-tp": "3-1-1"
 }
 },
 {
 "link-id": "D3,3-1-1,D1,1-3-1",
 "source": {
 "source-node": "D3",
 "source-tp": "3-1-1"
 }
 "destination": {
 "dest-node": "D1",
 "dest-tp": "1-3-1"
 }
 },
 {
 "link-id": "D2,2-3-1,D3,3-2-1",
 "source": {
 "source-node": "D2",
 "source-tp": "2-3-1"
 }
 "destination": {
 "dest-node": "D3",
 "dest-tp": "3-2-1"
 }
 },
 {
 "link-id": "D3,3-2-1,D2,2-3-1",
 "source": {
 "source-node": "D3",
 "source-tp": "3-2-1"

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 61

Acknowledgments

We wish to acknowledge the helpful contributions, comments, and suggestions that were received from

Alia Atlas, Andy Bierman, Martin Bjorklund, Igor Bryskin, Benoit Claise, Susan Hares, Ladislav

Lhotka, Carlos Pignataro, Juergen Schoenwaelder, Robert Wilton, Qin Wu, and Xian Zhang.

Contributors

More people contributed to the data model presented in this paper than can be listed in the "Authors'

Addresses" section. Additional contributors include:

• Vishnu Pavan Beeram, Juniper

• Ken Gray, Cisco

• Tom Nadeau, Brocade

• Tony Tkacik

• Kent Watsen, Juniper

• Aleksandr Zhdankin, Cisco

Figure 8 Instance Data Tree

 }
 "destination": {
 "dest-node": "D2",
 "dest-tp": "2-3-1"
 }
 }
]
 }
]
 }
}

Authors' Addresses

Alexander Clemm

Huawei USA - Futurewei Technologies Inc.

, Santa Clara CA

United States of America

 ludwig@clemm.org,

alexander.clemm@huawei.com

Email:

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 62

mailto:ludwig@clemm.org,%20alexander.clemm@huawei.com
mailto:ludwig@clemm.org,%20alexander.clemm@huawei.com

Jan Medved

 jmedved@cisco.com Email:

Robert Varga

 robert.varga@pantheon.tech Email:

Nitin Bahadur

 nitin_bahadur@yahoo.com Email:

Hariharan Ananthakrishnan

 hari@packetdesign.com Email:

Xufeng Liu

 xufeng.liu.ietf@gmail.com Email:

RFC 8345 YANG Data Model for Network Topologies March 2018

Clemm, et al. Standards Track Page 63

mailto:jmedved@cisco.com
mailto:robert.varga@pantheon.tech
mailto:nitin_bahadur@yahoo.com
mailto:hari@packetdesign.com
mailto:xufeng.liu.ietf@gmail.com

	A YANG Data Model
 for Network Topologies
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Key Words
	3. Definitions and Abbreviations
	4. Model Structure Details
	4.1. Base Network Model
	4.2. Base Network Topology Data Model
	4.3. Extending the Data Model
	4.4. Discussion and Selected Design Decisions
	4.4.1. Container Structure
	4.4.2. Underlay Hierarchies and Mappings
	4.4.3. Dealing with Changes in Underlay Networks
	4.4.4. Use of Groupings
	4.4.5. Cardinality and Directionality of Links
	4.4.6. Multihoming and Link Aggregation
	4.4.7. Mapping Redundancy
	4.4.8. Typing
	4.4.9. Representing the Same Device in Multiple Networks
	4.4.10. Supporting Client-Configured and System-Controlled Network Topologies
	4.4.11. Identifiers of String or URI Type

	5. Interactions with Other YANG Modules
	6. YANG Modules
	6.1. Defining the Abstract Network: ietf-network
	6.2. Creating Abstract Network Topology: ietf‑network‑topology

	7. IANA Considerations
	8. Security Considerations
	References
	Normative References
	Informative References

	Appendix A. Model Use Cases
	A.1. Fetching Topology from a Network Element
	A.2. Modifying TE Topology Imported from an Optical Controller
	A.3. Annotating Topology for Local Computation
	A.4. SDN Controller-Based Configuration of Overlays on Top of Underlays
	Appendix B. Companion YANG Data Models for Implementations Not Compliant with NMDA
	B.1. YANG Module for Network State
	B.2. YANG Module for Network Topology State
	Appendix C. An Example
	Acknowledgments
	Contributors
	Authors' Addresses

