
RFC 9814
Use of the SLH-DSA Signature Algorithm in the
Cryptographic Message Syntax (CMS)

Abstract
SLH-DSA is a stateless hash-based signature scheme. This document specifies the conventions for
using the SLH-DSA signature algorithm with the Cryptographic Message Syntax (CMS). In
addition, the algorithm identifier and public key syntax are provided.

Stream: Internet Engineering Task Force (IETF)
RFC: 9814
Category: Standards Track
Published: July 2025
ISSN: 2070-1721
Authors: R. Housley

Vigil Security
S. Fluhrer
Cisco Systems

P. Kampanakis
Amazon Web Services

B. Westerbaan
Cloudflare

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9814

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Housley, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9814
https://www.rfc-editor.org/info/rfc9814
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. ASN.1

1.2. Motivation

1.3. Terminology

2. SLH-DSA Hash-Based Signature Algorithm Overview

3. SLH-DSA Public Key Identifier

4. Signed-Data Conventions

5. Security Considerations

6. Operational Considerations

7. IANA Considerations

8. References

8.1. Normative References

8.2. Informative References

Appendix A. ASN.1 Module

Acknowledgements

Authors' Addresses

2

3

3

3

3

4

7

9

10

10

10

10

11

12

17

17

1. Introduction
This document specifies the conventions for using the SLH-DSA hash-based signature algorithm

 with the Cryptographic Message Syntax (CMS) signed-data content type.

SLH-DSA offers two signature modes: pure mode and pre-hash mode. SLH-DSA signature
operations include a context string as input. The context string has a maximum length of 255
bytes. By default, the context string is the empty string. This document only specifies the use of
pure mode with an empty context string for the CMS signed-data content type.

SLH-DSA offers three security levels. The parameters for each of the security levels were chosen
to provide 128 bits of security, 192 bits of security, and 256 bits of security. Separate algorithm
identifiers have been assigned for SLH-DSA at each of these security levels.

[FIPS205] [RFC5652]

RFC 9814 SLH-DSA Signature Algorithm in CMS July 2025

Housley, et al. Standards Track Page 2

SLH-DSA is a stateless hash-based signature algorithm. Other hash-based signature algorithms
are stateful, including Hierarchical Signature System (HSS) / Leighton-Micali Signatures (LMS)

 and eXtended Merkle Signature Scheme (XMSS) . Without the need for state
kept by the signer, SLH-DSA is much less fragile than the stateful hash-based signature
algorithms.

[RFC8554] [RFC8391]

1.1. ASN.1
CMS values are generated using ASN.1 , using the Basic Encoding Rules (BER) and the
Distinguished Encoding Rules (DER) .

[X680]
[X690]

1.2. Motivation
There have been recent advances in cryptanalysis and advances in the development of quantum
computers. Each of these advances pose a threat to widely deployed digital signature algorithms.

If Cryptographically Relevant Quantum Computers (CRQCs) are ever built, they will be able to
break many of the public key cryptosystems currently in use, including RSA, DSA, Elliptic Curve
Digital Signature Algorithm (ECDSA), and Edwards-curve Digital Signature Algorithm (EdDSA). A
Post-Quantum Cryptosystem (PQC) is secure against quantum computers that have more than a
trivial number of quantum bits (qu-bits). It is open to conjecture when it will be feasible to build
such quantum computers; however, it is prudent to use cryptographic algorithms that remain
secure if a CRQC is invented. SLH-DSA is a PQC signature algorithm.

1.3. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

2. SLH-DSA Hash-Based Signature Algorithm Overview
SLH-DSA is a hash-based signature scheme. SLH-DSA makes use of a few time signature
constructions, namely Forest of Random Subsets (FORS) and a hypertree. FORS signs a message
with a private key. The corresponding FORS public keys are the leaves in k binary trees. The
roots of these trees are hashed together to form a FORS root. SLH-DSA uses a one-time signature
scheme called Winternitz One-Time Signature Plus (WOTS+). The FORS tree roots are signed by a
WOTS+ one-time signature private key. The corresponding WOTS+ public keys form the leaves in
d-layers of Merkle subtrees in the SLH-DSA hypertree. The bottom layer of that hypertree signs
the FORS roots with WOTS+. The roots of the bottom Merkle subtrees are then signed with
WOTS+ and the corresponding WOTS+ public keys form the leaves of the next-level-up subtree.
Subtree roots are consequently signed by their corresponding subtree layers until the top
subtree is reached. The top-layer subtree forms the hypertree root, which is trusted at the
verifier.

RFC 9814 SLH-DSA Signature Algorithm in CMS July 2025

Housley, et al. Standards Track Page 3

An SLH-DSA signature consists of the randomization string, the FORS signature, the WOTS+
signature in each layer, and the path to the root of each subtree until the root of the hypertree is
reached.

An SLH-DSA signature is verified using the FORS signature, the WOTS+ signatures, and the path
to the root of each subtree. When reaching the root of the hypertree, the signature verifies only
if it hashes to the pre-trusted root of the SLH-DSA hypertree.

SLH-DSA is a stateless hash-based signature algorithm. Stateful hash-based signature schemes
require that the WOTS+ private key (generated by using a state index) never be reused or the
scheme loses its security. Although its security decreases, FORS, which is used at the bottom of
the SLH-DSA hypertree, does not collapse if the same private key used to sign two or more
different messages like in stateful hash-based signature schemes. Without the need for state kept
by the signer to ensure it is not reused, SLH-DSA is much less fragile.

SLH-DSA was designed to sign up to 264 messages and offers three security levels. The
parameters of the SLH-DSA hypertree include the security parameter, the hash function, the tree
height, the number of layers of subtrees, the Winternitz parameter of WOTS+, and the number of
FORS trees and leaves in each. The parameters for each of the security levels were chosen to be
at least as secure as a generic block cipher of 128, 192, or 256 bits.

3. SLH-DSA Public Key Identifier
The AlgorithmIdentifier for an SLH-DSA public key use one of the twelve id-slh-dsa object
identifiers listed below, based on the security level used to generate the SLH-DSA hypertree, the
small or fast version of the algorithm, and the use of SHA2 or SHAKE . For
example, id-slh-dsa-shake-256s represents the 256-bit security level, the small version of the
algorithm, and the use of SHAKE256. The parameters field of the AlgorithmIdentifier for the SLH-
DSA public key be absent.

MUST

[FIPS180] [FIPS202]

MUST

RFC 9814 SLH-DSA Signature Algorithm in CMS July 2025

Housley, et al. Standards Track Page 4

When this AlgorithmIdentifier appears in the SubjectPublicKeyInfo field of an X.509 certificate
, the certificate key usage extension contain digitalSignature, nonRepudiation,

keyCertSign, and cRLSign; the certificate key usage extension contain other values.

 nistAlgorithms OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101) csor(3) 4 }

 sigAlgs OBJECT IDENTIFIER ::= { nistAlgorithms 3 }

 id-slh-dsa-sha2-128s OBJECT IDENTIFIER ::= { sigAlgs 20 }

 id-slh-dsa-sha2-128f OBJECT IDENTIFIER ::= { sigAlgs 21 }

 id-slh-dsa-sha2-192s OBJECT IDENTIFIER ::= { sigAlgs 22 }

 id-slh-dsa-sha2-192f OBJECT IDENTIFIER ::= { sigAlgs 23 }

 id-slh-dsa-sha2-256s OBJECT IDENTIFIER ::= { sigAlgs 24 }

 id-slh-dsa-sha2-256f OBJECT IDENTIFIER ::= { sigAlgs 25 }

 id-slh-dsa-shake-128s OBJECT IDENTIFIER ::= { sigAlgs 26 }

 id-slh-dsa-shake-128f OBJECT IDENTIFIER ::= { sigAlgs 27 }

 id-slh-dsa-shake-192s OBJECT IDENTIFIER ::= { sigAlgs 28 }

 id-slh-dsa-shake-192f OBJECT IDENTIFIER ::= { sigAlgs 29 }

 id-slh-dsa-shake-256s OBJECT IDENTIFIER ::= { sigAlgs 30 }

 id-slh-dsa-shake-256f OBJECT IDENTIFIER ::= { sigAlgs 31 }

[RFC5280] MAY
MUST NOT

RFC 9814 SLH-DSA Signature Algorithm in CMS July 2025

Housley, et al. Standards Track Page 5

 pk-slh-dsa-sha2-128s PUBLIC-KEY ::= {
 IDENTIFIER id-slh-dsa-sha2-128s
 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

 pk-slh-dsa-sha2-128f PUBLIC-KEY ::= {
 IDENTIFIER id-slh-dsa-sha2-128f
 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

 pk-slh-dsa-sha2-192s PUBLIC-KEY ::= {
 IDENTIFIER id-slh-dsa-sha2-192s
 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

 pk-slh-dsa-sha2-192f PUBLIC-KEY ::= {
 IDENTIFIER id-slh-dsa-sha2-192f
 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

 pk-slh-dsa-sha2-256s PUBLIC-KEY ::= {
 IDENTIFIER id-slh-dsa-sha2-256s
 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

 pk-slh-dsa-sha2-256f PUBLIC-KEY ::= {
 IDENTIFIER id-slh-dsa-sha2-256f
 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

 pk-slh-dsa-shake-128s PUBLIC-KEY ::= {
 IDENTIFIER id-slh-dsa-shake-128s
 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

 pk-slh-dsa-shake-128f PUBLIC-KEY ::= {
 IDENTIFIER id-slh-dsa-shake-128f
 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

 pk-slh-dsa-shake-192s PUBLIC-KEY ::= {

RFC 9814 SLH-DSA Signature Algorithm in CMS July 2025

Housley, et al. Standards Track Page 6

No additional encoding of the SLH-DSA public key is applied in the SubjectPublicKeyInfo field of
an X.509 certificate .

No additional encoding of the SLH-DSA private key is applied in the PrivateKeyInfo field of the
privateKey field of the OneAsymmetricKey type of an Asymmetric Key Package .

When an SLH-DSA public key appears outside of a SubjectPublicKeyInfo type in an environment
that uses ASN.1 encoding, the SLH-DSA public key can be encoded as an OCTET STRING by using
the SLH-DSA-PublicKey type.

When an SLH-DSA private key appears outside of an Asymmetric Key Package in an
environment that uses ASN.1 encoding, the SLH-DSA private key can be encoded as an OCTET
STRING by using the SLH-DSA-PrivateKey type.

 IDENTIFIER id-slh-dsa-shake-192s
 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

 pk-slh-dsa-shake-192f PUBLIC-KEY ::= {
 IDENTIFIER id-slh-dsa-shake-192f
 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

 pk-slh-dsa-shake-256s PUBLIC-KEY ::= {
 IDENTIFIER id-slh-dsa-shake-256s
 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

 pk-slh-dsa-shake-256f PUBLIC-KEY ::= {
 IDENTIFIER id-slh-dsa-shake-256f
 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

 SLH-DSA-PublicKey ::= OCTET STRING (SIZE (32 | 48 | 64))

 SLH-DSA-PrivateKey ::= OCTET STRING (SIZE (64 | 96 | 128))

[RFC5280]

[RFC5958]

4. Signed-Data Conventions
As specified in CMS , the digital signature is produced from the message digest and the
signer's private key. The signature is computed over different values depending on whether
signed attributes are absent or present.

[RFC5652]

RFC 9814 SLH-DSA Signature Algorithm in CMS July 2025

Housley, et al. Standards Track Page 7

When signed attributes are absent, the SLH-DSA (pure mode) signature is computed over the
content. When signed attributes are present, a hash be computed over the content using
the same hash function that is used in the SLH-DSA tree. The signed attributes include a
content-type attribute and a message-digest attribute. The message-digest attribute contains the
hash value of the content. The SLH-DSA signature is computed over the DER encoding of the set
of signed attributes. The SLH-DSA signature-generation operation is called slh_sign; see Section
10.2.1 of . In summary:

In some implementations, performance may be significantly improved by signing and verifying
DER(SignedAttributes) when the content is large. That is, passing an entire large message
content to the signing function or the signature validation function can have an impact on
performance. When the signed attributes are present, requires the
inclusion of the content-type attribute and the message-digest attribute. Other attributes can also
be included.

When using SLH-DSA and signed attributes are present in the SignerInfo, the digestAlgorithm
field in the SignedData include the identifier for the one-way hash function used to
compute the message digest.

When using SLH-DSA, the fields in the SignerInfo are used as follows:

digestAlgorithm:
The digestAlgorithm identify a one-way hash function. When signed attributes are
absent, the digestAlgorithm identifier match the hash function used in the SLH-DSA
tree (as shown in the list below). When signed attributes are present, to ensure collision
resistance, the identified hash function produce a hash value that is at least twice the
size of the hash function used in the SLH-DSA tree. The hash functions defined in
and be supported for use with the variants of SLH-DSA as shown below:

MUST
MUST

[FIPS205]

 IF (signed attributes are absent)
 THEN slh_sign(content)
 ELSE message-digest attribute = Hash(content);
 slh_sign(DER(SignedAttributes))

Section 5.3 of [RFC5652]

MUST

MUST
MUST

MUST
[FIPS180]

[FIPS202] MUST

 id-slh-dsa-sha2-128s: SHA-256
 id-slh-dsa-sha2-128f: SHA-256
 id-slh-dsa-sha2-192s: SHA-512
 id-slh-dsa-sha2-192f: SHA-512
 id-slh-dsa-sha2-256s: SHA-512
 id-slh-dsa-sha2-256f: SHA-512
 id-slh-dsa-shake-128s: SHAKE128 with 256-bit output
 id-slh-dsa-shake-128f: SHAKE128 with 256-bit output
 id-slh-dsa-shake-192s: SHAKE256 with 512-bit output
 id-slh-dsa-shake-192f: SHAKE256 with 512-bit output
 id-slh-dsa-shake-256s: SHAKE256 with 512-bit output
 id-slh-dsa-shake-256f: SHAKE256 with 512-bit output

RFC 9814 SLH-DSA Signature Algorithm in CMS July 2025

Housley, et al. Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc5652#section-5.3

The object identifiers for SHA-256 and SHA-512 are included in . The object
identifiers for SHAKE128 and SHAKE256 are included in . In all four cases, the
AlgorithmIdentifier include parameters.

signatureAlgorithm:
The signatureAlgorithm contain one of the SLH-DSA algorithm identifiers, and the
algorithm parameters field be absent. The algorithm identifier be one of the
following:

signature:
The signature contains the signature value resulting from the SLH-DSA signing operation
with the parameters associated with the selected signatureAlgorithm. The SLH-DSA signature-
generation operation is specified in Section 10.2.1 of , and the SLH-DSA signature
verification operation is specified in Section 10.3 of . Signature verification
include checking that the signatureAlgorithm field identifies SLH-DSA parameters that are
consistent with public key used to validate the signature.

[RFC5754]
[RFC8702]

SHOULD NOT

MUST
MUST MUST

 id-slh-dsa-sha2-128s, id-slh-dsa-sha2-128f,
 id-slh-dsa-sha2-192s, id-slh-dsa-sha2-192f,
 id-slh-dsa-sha2-256s, id-slh-dsa-sha2-256f,
 id-slh-dsa-shake-128s, id-slh-dsa-shake-128f,
 id-slh-dsa-shake-192s, id-slh-dsa-shake-192f,
 id-slh-dsa-shake-256s, id-slh-dsa-shake-256f.

[FIPS205]
[FIPS205] MUST

5. Security Considerations
Implementations protect the private keys. Compromise of the private keys may result in
the ability to forge signatures.

When generating an SLH-DSA key pair, an implementation generate each key pair
independently of all other key pairs in the SLH-DSA hypertree.

A SLH-DSA tree be used for more than 264 signing operations.

The generation of private keys relies on random numbers. The use of inadequate Pseudorandom
Number Generators (PRNGs) to generate these values can result in little or no security. An
attacker may find it much easier to reproduce the PRNG environment that produced the keys,
searching the resulting small set of possibilities, rather than brute-force searching the whole key
space. The generation of quality random numbers is difficult, and offers important
guidance in this area.

To avoid algorithm-substitution attacks, the CMSAlgorithmProtection attribute defined in
 be included in signed attributes.

Implementers should consider their particular use cases and may choose to implement optional
fault-attack countermeasures . Verifying a signature before releasing the
signature value is a typical fault-attack countermeasure; however, this countermeasure is not

MUST

MUST

MUST NOT

[RFC4086]

[RFC6211] SHOULD

[CMP2018] [Ge2023]

RFC 9814 SLH-DSA Signature Algorithm in CMS July 2025

Housley, et al. Standards Track Page 9

effective for SLH-DSA . Redundancy by replicating the signature-generation process
be used as an effective fault-attack countermeasure for SLH-DSA ; however, the SLH-
DSA signature generation is already considered slow.

Likewise, implementers should consider their particular use cases and may choose to implement
protections against passive power and emissions side-channel attacks .

[Ge2023] MAY
[Ge2023]

[SLotH]

6. Operational Considerations
If slh_sign is implemented in a hardware device such as Hardware Security Module (HSM) or
portable cryptographic token, implementations can avoid sending the full content to the device.
By including signed attributes, which necessarily include the message-digest attribute and the
content-type attribute as described in , the much smaller set of signed
attributes are sent to the device for signing.

By including signed attributes in the SignerInfo, one can obtain similar interface characteristics
to SLH-DSA in pre-hash mode. With pre-hash mode, the hash of the content is passed to the SLH-
DSA signature operation instead of the full message content. By including signed attributes in
the SignerInfo, a relatively small to-be-signed value is passed to the SLH-DSA signature
operation. For this reason, SLH-DSA pre-hash mode is not specified for use with the CMS
SignedData. Note SLH-DSA pre-hash mode always yields a different signature value than SLH-
DSA pure mode, even if the to-be-signed content is the same.

When using SLH-DSA in pure mode, it is not possible to single-pass process the content to verify
a SignedData message that does not contain signed attributes. To assist recipients that might
make use of stream-based APIs, implementers include signed attributes within any
SignerInfo that uses SLH-DSA as signature algorithm. Doing so allows the recipient
implementation to avoid keeping the signed content in memory. Recall that when signed
attributes are present, they contain a content-type attribute and a message-digest
attribute, and they contain a CMSAlgorithmProtection attribute.

Section 5.3 of [RFC5652]

SHOULD

MUST
SHOULD

7. IANA Considerations
For the ASN.1 Module in Appendix A, IANA has assigned an Object Identifier (OID) for the
module identifier (81) with a Description of "id-mod-slh-dsa-2024". The OID for the module has
been allocated in the "SMI Security for S/MIME Module Identifier (1.2.840.113549.1.9.16.0)"
registry.

8. References

[FIPS180]

8.1. Normative References

,
, , , August 2015,

.

National Institute of Standards and Technology (NIST) "Secure Hash Standard
(SHS)" NIST FIPS 180-4 DOI 10.6028/NIST.FIPS.180-4 <https://
doi.org/10.6028/NIST.FIPS.180-4>

RFC 9814 SLH-DSA Signature Algorithm in CMS July 2025

Housley, et al. Standards Track Page 10

https://www.rfc-editor.org/rfc/rfc5652#section-5.3
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4

[FIPS202]

[FIPS205]

[RFC2119]

[RFC5280]

[RFC5652]

[RFC5754]

[RFC5958]

[RFC6211]

[RFC8174]

[RFC8702]

[X680]

[X690]

,
, ,

, August 2015, .

,
, , , 13

August 2024, .

, , ,
, , March 1997,
.

, , , , , and ,

, , , May 2008,
.

, , , ,
, September 2009, .

, ,
, , January 2010,

.

, , , , August
2010, .

,
, , , April 2011,

.

, ,
, , , May 2017,

.

 and ,
, , , January

2020, .

,
, ,

, February 2021, .

,

, , ,
February 2021, .

National Institute of Standards and Technology (NIST) "SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions" NIST FIPS 202 DOI
10.6028/NIST.FIPS.202 <https://doi.org/10.6028/NIST.FIPS.202>

National Institute of Standards and Technology (NIST) "Stateless Hash-Based
Digital Signature Standard" NIST FIPS 205 DOI 10.6028/NIST.FIPS.205

<https://doi.org/10.6028/NIST.FIPS.205>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Cooper, D. Santesson, S. Farrell, S. Boeyen, S. Housley, R. W. Polk
"Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile" RFC 5280 DOI 10.17487/RFC5280 <https://www.rfc-
editor.org/info/rfc5280>

Housley, R. "Cryptographic Message Syntax (CMS)" STD 70 RFC 5652 DOI
10.17487/RFC5652 <https://www.rfc-editor.org/info/rfc5652>

Turner, S. "Using SHA2 Algorithms with Cryptographic Message Syntax" RFC
5754 DOI 10.17487/RFC5754 <https://www.rfc-editor.org/info/
rfc5754>

Turner, S. "Asymmetric Key Packages" RFC 5958 DOI 10.17487/RFC5958
<https://www.rfc-editor.org/info/rfc5958>

Schaad, J. "Cryptographic Message Syntax (CMS) Algorithm Identifier
Protection Attribute" RFC 6211 DOI 10.17487/RFC6211 <https://
www.rfc-editor.org/info/rfc6211>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Kampanakis, P. Q. Dang "Use of the SHAKE One-Way Hash Functions in the
Cryptographic Message Syntax (CMS)" RFC 8702 DOI 10.17487/RFC8702

<https://www.rfc-editor.org/info/rfc8702>

ITU-T "Information technology -- Abstract Syntax Notation One (ASN.1):
Specification of basic notation" ITU-T Recommendation X.680 ISO/IEC
8824-1:2021 <https://www.itu.int/rec/T-REC-X.680>

ITU-T "Information technology -- ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER)" ITU-T Recommendation X.690 ISO/IEC 8825-1-2021

<https://www.itu.int/rec/T-REC-X.690>

8.2. Informative References

RFC 9814 SLH-DSA Signature Algorithm in CMS July 2025

Housley, et al. Standards Track Page 11

https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.205
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc5754
https://www.rfc-editor.org/info/rfc5754
https://www.rfc-editor.org/info/rfc5958
https://www.rfc-editor.org/info/rfc6211
https://www.rfc-editor.org/info/rfc6211
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8702
https://www.itu.int/rec/T-REC-X.680
https://www.itu.int/rec/T-REC-X.690

[CMP2018]

[Ge2023]

[RFC4086]

[RFC5911]

[RFC8391]

[RFC8554]

[SLotH]

, , and ,
,

,
, 2018,

.

, ,
,

, 2023,
.

, , and ,
, , , , June 2005,

.

 and ,
, , , June 2010,

.

, , , , and ,
, , , May

2018, .

, , and , ,
, , April 2019,
.

,
, , 2024,

.

Castelnovi, L. Martinelli, A. T. Prest "Grafting Trees: A Fault Attack Against
the SPHINCS Framework" Post-Quantum Cryptography (PQCrypto 2018),
Lecture Notes in Computer Science, vol. 10786, pp. 165-184 DOI
10.1007/978-3-319-79063-3_8 <https://link.springer.com/chapter/
10.1007/978-3-319-79063-3_8>

Genêt, A. "On Protecting SPHINCS+ Against Fault Attacks" IACR Transactions
on Cryptographic Hardware and Embedded Systems, vol. 2023, no. 2, pp. 80-114
DOI 10.46586/tches.v2023.i2.80-114 <https://tches.iacr.org/index.php/
TCHES/article/view/10278/9726>

Eastlake 3rd, D. Schiller, J. S. Crocker "Randomness Requirements for
Security" BCP 106 RFC 4086 DOI 10.17487/RFC4086 <https://
www.rfc-editor.org/info/rfc4086>

Hoffman, P. J. Schaad "New ASN.1 Modules for Cryptographic Message
Syntax (CMS) and S/MIME" RFC 5911 DOI 10.17487/RFC5911 <https://
www.rfc-editor.org/info/rfc5911>

Huelsing, A. Butin, D. Gazdag, S. Rijneveld, J. A. Mohaisen "XMSS:
eXtended Merkle Signature Scheme" RFC 8391 DOI 10.17487/RFC8391

<https://www.rfc-editor.org/info/rfc8391>

McGrew, D. Curcio, M. S. Fluhrer "Leighton-Micali Hash-Based Signatures"
RFC 8554 DOI 10.17487/RFC8554 <https://www.rfc-editor.org/info/
rfc8554>

Saarinen, M.-J. "Accelerating SLH-DSA by Two Orders of Magnitude with a
Single Hash Unit" Cryptology ePrint Archive, Paper 2024/367 <https://
eprint.iacr.org/2024/367.pdf>

Appendix A. ASN.1 Module
This ASN.1 Module builds upon the conventions established in .[RFC5911]

<CODE BEGINS>
SLH-DSA-Module-2024
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 id-smime(16) id-mod(0) id-mod-slh-dsa-2024(81) }

DEFINITIONS IMPLICIT TAGS ::= BEGIN

EXPORTS ALL;

IMPORTS
 PUBLIC-KEY, SIGNATURE-ALGORITHM, SMIME-CAPS
 FROM AlgorithmInformation-2009 -- in [RFC5911]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58) } ;

RFC 9814 SLH-DSA Signature Algorithm in CMS July 2025

Housley, et al. Standards Track Page 12

https://link.springer.com/chapter/10.1007/978-3-319-79063-3_8
https://link.springer.com/chapter/10.1007/978-3-319-79063-3_8
https://tches.iacr.org/index.php/TCHES/article/view/10278/9726
https://tches.iacr.org/index.php/TCHES/article/view/10278/9726
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc5911
https://www.rfc-editor.org/info/rfc5911
https://www.rfc-editor.org/info/rfc8391
https://www.rfc-editor.org/info/rfc8554
https://www.rfc-editor.org/info/rfc8554
https://eprint.iacr.org/2024/367.pdf
https://eprint.iacr.org/2024/367.pdf

--
-- Object Identifiers
--

nistAlgorithms OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
 country(16) us(840) organization(1) gov(101) csor(3) 4 }

sigAlgs OBJECT IDENTIFIER ::= { nistAlgorithms 3 }

id-slh-dsa-sha2-128s OBJECT IDENTIFIER ::= { sigAlgs 20 }

id-slh-dsa-sha2-128f OBJECT IDENTIFIER ::= { sigAlgs 21 }

id-slh-dsa-sha2-192s OBJECT IDENTIFIER ::= { sigAlgs 22 }

id-slh-dsa-sha2-192f OBJECT IDENTIFIER ::= { sigAlgs 23 }

id-slh-dsa-sha2-256s OBJECT IDENTIFIER ::= { sigAlgs 24 }

id-slh-dsa-sha2-256f OBJECT IDENTIFIER ::= { sigAlgs 25 }

id-slh-dsa-shake-128s OBJECT IDENTIFIER ::= { sigAlgs 26 }

id-slh-dsa-shake-128f OBJECT IDENTIFIER ::= { sigAlgs 27 }

id-slh-dsa-shake-192s OBJECT IDENTIFIER ::= { sigAlgs 28 }

id-slh-dsa-shake-192f OBJECT IDENTIFIER ::= { sigAlgs 29 }

id-slh-dsa-shake-256s OBJECT IDENTIFIER ::= { sigAlgs 30 }

id-slh-dsa-shake-256f OBJECT IDENTIFIER ::= { sigAlgs 31 }

--
-- Signature Algorithm, Public Key, and Private Key
--

sa-slh-dsa-sha2-128s SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-slh-dsa-sha2-128s
 PARAMS ARE absent
 PUBLIC-KEYS { pk-slh-dsa-sha2-128s }
 SMIME-CAPS { IDENTIFIED BY id-slh-dsa-sha2-128s } }

sa-slh-dsa-sha2-128f SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-slh-dsa-sha2-128f
 PARAMS ARE absent
 PUBLIC-KEYS { pk-slh-dsa-sha2-128f }
 SMIME-CAPS { IDENTIFIED BY id-slh-dsa-sha2-128f } }

sa-slh-dsa-sha2-192s SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-slh-dsa-sha2-192s
 PARAMS ARE absent
 PUBLIC-KEYS { pk-slh-dsa-sha2-192s }
 SMIME-CAPS { IDENTIFIED BY id-slh-dsa-sha2-192s } }

sa-slh-dsa-sha2-192f SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-slh-dsa-sha2-192f
 PARAMS ARE absent

RFC 9814 SLH-DSA Signature Algorithm in CMS July 2025

Housley, et al. Standards Track Page 13

 PUBLIC-KEYS { pk-slh-dsa-sha2-192f }
 SMIME-CAPS { IDENTIFIED BY id-slh-dsa-sha2-192f } }

sa-slh-dsa-sha2-256s SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-slh-dsa-sha2-256s
 PARAMS ARE absent
 PUBLIC-KEYS { pk-slh-dsa-sha2-256s }
 SMIME-CAPS { IDENTIFIED BY id-slh-dsa-sha2-256s } }

sa-slh-dsa-sha2-256f SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-slh-dsa-sha2-256f
 PARAMS ARE absent
 PUBLIC-KEYS { pk-slh-dsa-sha2-256f }
 SMIME-CAPS { IDENTIFIED BY id-slh-dsa-sha2-256f } }

sa-slh-dsa-shake-128s SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-slh-dsa-shake-128s
 PARAMS ARE absent
 PUBLIC-KEYS { pk-slh-dsa-shake-128s }
 SMIME-CAPS { IDENTIFIED BY id-slh-dsa-shake-128s } }

sa-slh-dsa-shake-128f SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-slh-dsa-shake-128f
 PARAMS ARE absent
 PUBLIC-KEYS { pk-slh-dsa-shake-128f }
 SMIME-CAPS { IDENTIFIED BY id-slh-dsa-shake-128f } }

sa-slh-dsa-shake-192s SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-slh-dsa-shake-192s
 PARAMS ARE absent
 PUBLIC-KEYS { pk-slh-dsa-shake-192s }
 SMIME-CAPS { IDENTIFIED BY id-slh-dsa-shake-192s } }

sa-slh-dsa-shake-192f SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-slh-dsa-shake-192f
 PARAMS ARE absent
 PUBLIC-KEYS { pk-slh-dsa-shake-192f }
 SMIME-CAPS { IDENTIFIED BY id-slh-dsa-shake-192f } }

sa-slh-dsa-shake-256s SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-slh-dsa-shake-256s
 PARAMS ARE absent
 PUBLIC-KEYS { pk-slh-dsa-shake-256s }
 SMIME-CAPS { IDENTIFIED BY id-slh-dsa-shake-256s } }

sa-slh-dsa-shake-256f SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-slh-dsa-shake-256f
 PARAMS ARE absent
 PUBLIC-KEYS { pk-slh-dsa-shake-256f }
 SMIME-CAPS { IDENTIFIED BY id-slh-dsa-shake-256f } }

pk-slh-dsa-sha2-128s PUBLIC-KEY ::= {
 IDENTIFIER id-slh-dsa-sha2-128s
 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

RFC 9814 SLH-DSA Signature Algorithm in CMS July 2025

Housley, et al. Standards Track Page 14

pk-slh-dsa-sha2-128f PUBLIC-KEY ::= {
 IDENTIFIER id-slh-dsa-sha2-128f
 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

pk-slh-dsa-sha2-192s PUBLIC-KEY ::= {
 IDENTIFIER id-slh-dsa-sha2-192s
 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

pk-slh-dsa-sha2-192f PUBLIC-KEY ::= {
 IDENTIFIER id-slh-dsa-sha2-192f
 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

pk-slh-dsa-sha2-256s PUBLIC-KEY ::= {
 IDENTIFIER id-slh-dsa-sha2-256s
 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

pk-slh-dsa-sha2-256f PUBLIC-KEY ::= {
 IDENTIFIER id-slh-dsa-sha2-256f
 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

pk-slh-dsa-shake-128s PUBLIC-KEY ::= {
 IDENTIFIER id-slh-dsa-shake-128s
 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

pk-slh-dsa-shake-128f PUBLIC-KEY ::= {
 IDENTIFIER id-slh-dsa-shake-128f
 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

pk-slh-dsa-shake-192s PUBLIC-KEY ::= {
 IDENTIFIER id-slh-dsa-shake-192s
 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

pk-slh-dsa-shake-192f PUBLIC-KEY ::= {
 IDENTIFIER id-slh-dsa-shake-192f

RFC 9814 SLH-DSA Signature Algorithm in CMS July 2025

Housley, et al. Standards Track Page 15

 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

pk-slh-dsa-shake-256s PUBLIC-KEY ::= {
 IDENTIFIER id-slh-dsa-shake-256s
 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

pk-slh-dsa-shake-256f PUBLIC-KEY ::= {
 IDENTIFIER id-slh-dsa-shake-256f
 -- KEY no ASN.1 wrapping --
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }
 -- PRIVATE-KEY no ASN.1 wrapping -- }

SLH-DSA-PublicKey ::= OCTET STRING (SIZE (32 | 48 | 64))

SLH-DSA-PrivateKey ::= OCTET STRING (SIZE (64 | 96 | 128))

--
-- Expand the signature algorithm set used by CMS [RFC5911]
--

SignatureAlgorithmSet SIGNATURE-ALGORITHM ::=
 { sa-slh-dsa-sha2-128s |
 sa-slh-dsa-sha2-128f |
 sa-slh-dsa-sha2-192s |
 sa-slh-dsa-sha2-192f |
 sa-slh-dsa-sha2-256s |
 sa-slh-dsa-sha2-256f |
 sa-slh-dsa-shake-128s |
 sa-slh-dsa-shake-128f |
 sa-slh-dsa-shake-192s |
 sa-slh-dsa-shake-192f |
 sa-slh-dsa-shake-256s |
 sa-slh-dsa-shake-256f,
 ... }

--
-- Expand the S/MIME capabilities set used by CMS [RFC5911]
--

SMimeCaps SMIME-CAPS ::=
 { sa-slh-dsa-sha2-128s.&smimeCaps |
 sa-slh-dsa-sha2-128f.&smimeCaps |
 sa-slh-dsa-sha2-192s.&smimeCaps |
 sa-slh-dsa-sha2-192f.&smimeCaps |
 sa-slh-dsa-sha2-256s.&smimeCaps |
 sa-slh-dsa-sha2-256f.&smimeCaps |
 sa-slh-dsa-shake-128s.&smimeCaps |
 sa-slh-dsa-shake-128f.&smimeCaps |
 sa-slh-dsa-shake-192s.&smimeCaps |
 sa-slh-dsa-shake-192f.&smimeCaps |
 sa-slh-dsa-shake-256s.&smimeCaps |

RFC 9814 SLH-DSA Signature Algorithm in CMS July 2025

Housley, et al. Standards Track Page 16

 sa-slh-dsa-shake-256f.&smimeCaps,
 ... }

END

<CODE ENDS>

Acknowledgements
Thanks to , , , ,

, , , , and for their careful review
and constructive comments.

Mike Ounsworth Tomas Gustavsson Daniel Van Geest Carl Wallace Phillip Hallam-
Baker Dieter Bratko Vijay Gurbani Paul Wouters Roman Danyliw

Authors' Addresses
Russ Housley
Vigil Security, LLC

housley@vigilsec.comEmail:

Scott Fluhrer
Cisco Systems

sfluhrer@cisco.comEmail:

Panos Kampanakis
Amazon Web Services

kpanos@amazon.comEmail:

Bas Westerbaan
Cloudflare

bas@westerbaan.nameEmail:

RFC 9814 SLH-DSA Signature Algorithm in CMS July 2025

Housley, et al. Standards Track Page 17

mailto:housley@vigilsec.com
mailto:sfluhrer@cisco.com
mailto:kpanos@amazon.com
mailto:bas@westerbaan.name

	RFC 9814
	Use of the SLH-DSA Signature Algorithm in the Cryptographic Message Syntax (CMS)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. ASN.1
	1.2. Motivation
	1.3. Terminology

	2. SLH-DSA Hash-Based Signature Algorithm Overview
	3. SLH-DSA Public Key Identifier
	4. Signed-Data Conventions
	5. Security Considerations
	6. Operational Considerations
	7. IANA Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. ASN.1 Module
	Acknowledgements
	Authors' Addresses

